Cargando…
Sequence-Specific Quantitation of Mutagenic DNA Damage via Polymerase Amplification with an Artificial Nucleotide
[Image: see text] DNA mutations can result from replication errors due to different forms of DNA damage, including low-abundance DNA adducts induced by reactions with electrophiles. The lack of strategies to measure DNA adducts within genomic loci, however, limits our understanding of chemical mutag...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7192524/ https://www.ncbi.nlm.nih.gov/pubmed/32196326 http://dx.doi.org/10.1021/jacs.9b11746 |
_version_ | 1783528027659960320 |
---|---|
author | Aloisi, Claudia M. N. Nilforoushan, Arman Ziegler, Nathalie Sturla, Shana J. |
author_facet | Aloisi, Claudia M. N. Nilforoushan, Arman Ziegler, Nathalie Sturla, Shana J. |
author_sort | Aloisi, Claudia M. N. |
collection | PubMed |
description | [Image: see text] DNA mutations can result from replication errors due to different forms of DNA damage, including low-abundance DNA adducts induced by reactions with electrophiles. The lack of strategies to measure DNA adducts within genomic loci, however, limits our understanding of chemical mutagenesis. The use of artificial nucleotides incorporated opposite DNA adducts by engineered DNA polymerases offers a potential basis for site-specific detection of DNA adducts, but the availability of effective artificial nucleotides that insert opposite DNA adducts is extremely limited, and furthermore, there has been no report of a quantitative strategy for determining how much DNA alkylation occurs in a sequence of interest. In this work, we synthesized an artificial nucleotide triphosphate that is selectively inserted opposite O(6)-carboxymethyl-guanine DNA by an engineered polymerase and is required for DNA synthesis past the adduct. We characterized the mechanism of this enzymatic process and demonstrated that the artificial nucleotide is a marker for the presence and location in the genome of O(6)-carboxymethyl-guanine. Finally, we established a mass spectrometric method for quantifying the incorporated artificial nucleotide and obtained a linear relationship with the amount of O(6)-carboxymethyl-guanine in the target sequence. In this work, we present a strategy to identify, locate, and quantify a mutagenic DNA adduct, advancing tools for linking DNA alkylation to mutagenesis and for detecting DNA adducts in genes as potential diagnostic biomarkers for cancer prevention. |
format | Online Article Text |
id | pubmed-7192524 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-71925242020-05-01 Sequence-Specific Quantitation of Mutagenic DNA Damage via Polymerase Amplification with an Artificial Nucleotide Aloisi, Claudia M. N. Nilforoushan, Arman Ziegler, Nathalie Sturla, Shana J. J Am Chem Soc [Image: see text] DNA mutations can result from replication errors due to different forms of DNA damage, including low-abundance DNA adducts induced by reactions with electrophiles. The lack of strategies to measure DNA adducts within genomic loci, however, limits our understanding of chemical mutagenesis. The use of artificial nucleotides incorporated opposite DNA adducts by engineered DNA polymerases offers a potential basis for site-specific detection of DNA adducts, but the availability of effective artificial nucleotides that insert opposite DNA adducts is extremely limited, and furthermore, there has been no report of a quantitative strategy for determining how much DNA alkylation occurs in a sequence of interest. In this work, we synthesized an artificial nucleotide triphosphate that is selectively inserted opposite O(6)-carboxymethyl-guanine DNA by an engineered polymerase and is required for DNA synthesis past the adduct. We characterized the mechanism of this enzymatic process and demonstrated that the artificial nucleotide is a marker for the presence and location in the genome of O(6)-carboxymethyl-guanine. Finally, we established a mass spectrometric method for quantifying the incorporated artificial nucleotide and obtained a linear relationship with the amount of O(6)-carboxymethyl-guanine in the target sequence. In this work, we present a strategy to identify, locate, and quantify a mutagenic DNA adduct, advancing tools for linking DNA alkylation to mutagenesis and for detecting DNA adducts in genes as potential diagnostic biomarkers for cancer prevention. American Chemical Society 2020-03-20 2020-04-15 /pmc/articles/PMC7192524/ /pubmed/32196326 http://dx.doi.org/10.1021/jacs.9b11746 Text en Copyright © 2020 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Aloisi, Claudia M. N. Nilforoushan, Arman Ziegler, Nathalie Sturla, Shana J. Sequence-Specific Quantitation of Mutagenic DNA Damage via Polymerase Amplification with an Artificial Nucleotide |
title | Sequence-Specific
Quantitation of Mutagenic DNA Damage
via Polymerase Amplification with an Artificial Nucleotide |
title_full | Sequence-Specific
Quantitation of Mutagenic DNA Damage
via Polymerase Amplification with an Artificial Nucleotide |
title_fullStr | Sequence-Specific
Quantitation of Mutagenic DNA Damage
via Polymerase Amplification with an Artificial Nucleotide |
title_full_unstemmed | Sequence-Specific
Quantitation of Mutagenic DNA Damage
via Polymerase Amplification with an Artificial Nucleotide |
title_short | Sequence-Specific
Quantitation of Mutagenic DNA Damage
via Polymerase Amplification with an Artificial Nucleotide |
title_sort | sequence-specific
quantitation of mutagenic dna damage
via polymerase amplification with an artificial nucleotide |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7192524/ https://www.ncbi.nlm.nih.gov/pubmed/32196326 http://dx.doi.org/10.1021/jacs.9b11746 |
work_keys_str_mv | AT aloisiclaudiamn sequencespecificquantitationofmutagenicdnadamageviapolymeraseamplificationwithanartificialnucleotide AT nilforoushanarman sequencespecificquantitationofmutagenicdnadamageviapolymeraseamplificationwithanartificialnucleotide AT zieglernathalie sequencespecificquantitationofmutagenicdnadamageviapolymeraseamplificationwithanartificialnucleotide AT sturlashanaj sequencespecificquantitationofmutagenicdnadamageviapolymeraseamplificationwithanartificialnucleotide |