Cargando…

The embryonic linker histone dBigH1 alters the functional state of active chromatin

Linker histones H1 are principal chromatin components, whose contribution to the epigenetic regulation of chromatin structure and function is not fully understood. In metazoa, specific linker histones are expressed in the germline, with female-specific H1s being normally retained in the early-embryo...

Descripción completa

Detalles Bibliográficos
Autores principales: Climent-Cantó, Paula, Carbonell, Albert, Tatarski, Milos, Reina, Oscar, Bujosa, Paula, Font-Mateu, Jofre, Bernués, Jordi, Beato, Miguel, Azorín, Fernando
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7192587/
https://www.ncbi.nlm.nih.gov/pubmed/32103264
http://dx.doi.org/10.1093/nar/gkaa122
_version_ 1783528035861921792
author Climent-Cantó, Paula
Carbonell, Albert
Tatarski, Milos
Reina, Oscar
Bujosa, Paula
Font-Mateu, Jofre
Bernués, Jordi
Beato, Miguel
Azorín, Fernando
author_facet Climent-Cantó, Paula
Carbonell, Albert
Tatarski, Milos
Reina, Oscar
Bujosa, Paula
Font-Mateu, Jofre
Bernués, Jordi
Beato, Miguel
Azorín, Fernando
author_sort Climent-Cantó, Paula
collection PubMed
description Linker histones H1 are principal chromatin components, whose contribution to the epigenetic regulation of chromatin structure and function is not fully understood. In metazoa, specific linker histones are expressed in the germline, with female-specific H1s being normally retained in the early-embryo. Embryonic H1s are present while the zygotic genome is transcriptionally silent and they are replaced by somatic variants upon activation, suggesting a contribution to transcriptional silencing. Here we directly address this question by ectopically expressing dBigH1 in Drosophila S2 cells, which lack dBigH1. We show that dBigH1 binds across chromatin, replaces somatic dH1 and reduces nucleosome repeat length (NRL). Concomitantly, dBigH1 expression down-regulates gene expression by impairing RNApol II binding and histone acetylation. These effects depend on the acidic N-terminal ED-domain of dBigH1 since a truncated form lacking this domain binds across chromatin and replaces dH1 like full-length dBigH1, but it does not affect NRL either transcription. In vitro reconstitution experiments using Drosophila preblastodermic embryo extracts corroborate these results. Altogether these results suggest that the negatively charged N-terminal tail of dBigH1 alters the functional state of active chromatin compromising transcription.
format Online
Article
Text
id pubmed-7192587
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-71925872020-05-06 The embryonic linker histone dBigH1 alters the functional state of active chromatin Climent-Cantó, Paula Carbonell, Albert Tatarski, Milos Reina, Oscar Bujosa, Paula Font-Mateu, Jofre Bernués, Jordi Beato, Miguel Azorín, Fernando Nucleic Acids Res Gene regulation, Chromatin and Epigenetics Linker histones H1 are principal chromatin components, whose contribution to the epigenetic regulation of chromatin structure and function is not fully understood. In metazoa, specific linker histones are expressed in the germline, with female-specific H1s being normally retained in the early-embryo. Embryonic H1s are present while the zygotic genome is transcriptionally silent and they are replaced by somatic variants upon activation, suggesting a contribution to transcriptional silencing. Here we directly address this question by ectopically expressing dBigH1 in Drosophila S2 cells, which lack dBigH1. We show that dBigH1 binds across chromatin, replaces somatic dH1 and reduces nucleosome repeat length (NRL). Concomitantly, dBigH1 expression down-regulates gene expression by impairing RNApol II binding and histone acetylation. These effects depend on the acidic N-terminal ED-domain of dBigH1 since a truncated form lacking this domain binds across chromatin and replaces dH1 like full-length dBigH1, but it does not affect NRL either transcription. In vitro reconstitution experiments using Drosophila preblastodermic embryo extracts corroborate these results. Altogether these results suggest that the negatively charged N-terminal tail of dBigH1 alters the functional state of active chromatin compromising transcription. Oxford University Press 2020-05-07 2020-02-27 /pmc/articles/PMC7192587/ /pubmed/32103264 http://dx.doi.org/10.1093/nar/gkaa122 Text en © The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Gene regulation, Chromatin and Epigenetics
Climent-Cantó, Paula
Carbonell, Albert
Tatarski, Milos
Reina, Oscar
Bujosa, Paula
Font-Mateu, Jofre
Bernués, Jordi
Beato, Miguel
Azorín, Fernando
The embryonic linker histone dBigH1 alters the functional state of active chromatin
title The embryonic linker histone dBigH1 alters the functional state of active chromatin
title_full The embryonic linker histone dBigH1 alters the functional state of active chromatin
title_fullStr The embryonic linker histone dBigH1 alters the functional state of active chromatin
title_full_unstemmed The embryonic linker histone dBigH1 alters the functional state of active chromatin
title_short The embryonic linker histone dBigH1 alters the functional state of active chromatin
title_sort embryonic linker histone dbigh1 alters the functional state of active chromatin
topic Gene regulation, Chromatin and Epigenetics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7192587/
https://www.ncbi.nlm.nih.gov/pubmed/32103264
http://dx.doi.org/10.1093/nar/gkaa122
work_keys_str_mv AT climentcantopaula theembryoniclinkerhistonedbigh1altersthefunctionalstateofactivechromatin
AT carbonellalbert theembryoniclinkerhistonedbigh1altersthefunctionalstateofactivechromatin
AT tatarskimilos theembryoniclinkerhistonedbigh1altersthefunctionalstateofactivechromatin
AT reinaoscar theembryoniclinkerhistonedbigh1altersthefunctionalstateofactivechromatin
AT bujosapaula theembryoniclinkerhistonedbigh1altersthefunctionalstateofactivechromatin
AT fontmateujofre theembryoniclinkerhistonedbigh1altersthefunctionalstateofactivechromatin
AT bernuesjordi theembryoniclinkerhistonedbigh1altersthefunctionalstateofactivechromatin
AT beatomiguel theembryoniclinkerhistonedbigh1altersthefunctionalstateofactivechromatin
AT azorinfernando theembryoniclinkerhistonedbigh1altersthefunctionalstateofactivechromatin
AT climentcantopaula embryoniclinkerhistonedbigh1altersthefunctionalstateofactivechromatin
AT carbonellalbert embryoniclinkerhistonedbigh1altersthefunctionalstateofactivechromatin
AT tatarskimilos embryoniclinkerhistonedbigh1altersthefunctionalstateofactivechromatin
AT reinaoscar embryoniclinkerhistonedbigh1altersthefunctionalstateofactivechromatin
AT bujosapaula embryoniclinkerhistonedbigh1altersthefunctionalstateofactivechromatin
AT fontmateujofre embryoniclinkerhistonedbigh1altersthefunctionalstateofactivechromatin
AT bernuesjordi embryoniclinkerhistonedbigh1altersthefunctionalstateofactivechromatin
AT beatomiguel embryoniclinkerhistonedbigh1altersthefunctionalstateofactivechromatin
AT azorinfernando embryoniclinkerhistonedbigh1altersthefunctionalstateofactivechromatin