Cargando…
Exonuclease combinations reduce noises in 3D genomics technologies
Chromosome conformation-capture technologies are widely used in 3D genomics; however, experimentally, such methods have high-noise limitations and, therefore, require significant bioinformatics efforts to extract reliable distal interactions. Miscellaneous undesired linear DNAs, present during proxi...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7192622/ https://www.ncbi.nlm.nih.gov/pubmed/32128590 http://dx.doi.org/10.1093/nar/gkaa106 |
Sumario: | Chromosome conformation-capture technologies are widely used in 3D genomics; however, experimentally, such methods have high-noise limitations and, therefore, require significant bioinformatics efforts to extract reliable distal interactions. Miscellaneous undesired linear DNAs, present during proximity-ligation, represent a main noise source, which needs to be minimized or eliminated. In this study, different exonuclease combinations were tested to remove linear DNA fragments from a circularized DNA preparation. This method efficiently removed linear DNAs, raised the proportion of annulation and increased the valid-pairs ratio from ∼40% to ∼80% for enhanced interaction detection in standard Hi-C. This strategy is applicable for development of various 3D genomics technologies, or optimization of Hi-C sequencing efficiency. |
---|