Cargando…
The role of transporters in cancer redox homeostasis and cross-talk with nanomedicines
Tumor cell usually exhibits high levels of reactive oxygen species and adaptive antioxidant system due to the metabolic, genetic, and microenvironment-associated alterations. The altered redox homeostasis can promote tumor progression, development, and treatment resistance. Several membrane transpor...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Shenyang Pharmaceutical University
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7193452/ https://www.ncbi.nlm.nih.gov/pubmed/32373196 http://dx.doi.org/10.1016/j.ajps.2020.02.001 |
Sumario: | Tumor cell usually exhibits high levels of reactive oxygen species and adaptive antioxidant system due to the metabolic, genetic, and microenvironment-associated alterations. The altered redox homeostasis can promote tumor progression, development, and treatment resistance. Several membrane transporters are involved in the resetting redox homeostasis and play important roles in tumor progression. Therefore, targeting the involved transporters to disrupt the altered redox balance emerges as a viable strategy for cancer therapy. In addition, nanomedicines have drawn much attention in the past decades. Using nanomedicines to target or reset the redox homeostasis alone or combined with other therapies has brought convincing data in cancer treatment. In this review, we will introduce the altered redox balance in cancer metabolism and involved transporters, and highlight the recent advancements of redox-modulating nanomedicines for cancer treatment. |
---|