Cargando…

A systematic analysis of apple root resistance traits to Pythium ultimum infection and the underpinned molecular regulations of defense activation

Apple replant disease (ARD), caused by a pathogen complex, significantly impacts apple orchard establishment. The molecular regulation on ARD resistance has not been investigated until recently. A systematic phenotyping effort and a series of transcriptomic analyses were performed to uncover the und...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Yanmin, Saltzgiver, Melody
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7193572/
https://www.ncbi.nlm.nih.gov/pubmed/32377353
http://dx.doi.org/10.1038/s41438-020-0286-4
Descripción
Sumario:Apple replant disease (ARD), caused by a pathogen complex, significantly impacts apple orchard establishment. The molecular regulation on ARD resistance has not been investigated until recently. A systematic phenotyping effort and a series of transcriptomic analyses were performed to uncover the underpinned molecular mechanism of apple root resistance to P. ultimum, a representative member in ARD pathogen complex. Genotype-specific plant survival rates and biomass reduction corresponded with microscopic features of necrosis progression patterns along the infected root. The presence of defined boundaries separating healthy and necrotic sections likely caused delayed necrosis expansion in roots of resistant genotypes compared with swift necrosis progression and profuse hyphae growth along infected roots of susceptible genotypes. Comprehensive datasets from a series of transcriptome analyses generated the first panoramic view of genome-wide transcriptional networks of defense activation between resistant and susceptible apple roots. Earlier and stronger molecular defense activation, such as pathogen perception and hormone signaling, may differentiate resistance from susceptibility in apple root. Delayed and interrupted activation of multiple defense pathways could have led to an inadequate resistance response. Using the panel of apple rootstock germplasm with defined resistant and susceptible phenotypes, selected candidate genes are being investigated by transgenic manipulation including CRISPR/Cas9 tools for their specific roles during apple root defense toward P. ultimum infection. Individual apple genes with validated functions regulating root resistance responses can be exploited for developing molecular tools for accurate and efficient incorporation of resistance traits into new apple rootstocks.