Cargando…

The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice

Most plants associate with beneficial arbuscular mycorrhizal (AM) fungi that facilitate soil nutrient acquisition. Prior to contact, partner recognition triggers reciprocal genetic remodelling to enable colonisation. The plant Dwarf14-Like (D14L) receptor conditions pre-symbiotic perception of AM fu...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Jeongmin, Lee, Tak, Cho, Jungnam, Servante, Emily K., Pucker, Boas, Summers, William, Bowden, Sarah, Rahimi, Mehran, An, Kyungsook, An, Gynheung, Bouwmeester, Harro J., Wallington, Emma J., Oldroyd, Giles, Paszkowski, Uta.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7193599/
https://www.ncbi.nlm.nih.gov/pubmed/32355217
http://dx.doi.org/10.1038/s41467-020-16021-1
_version_ 1783528224498647040
author Choi, Jeongmin
Lee, Tak
Cho, Jungnam
Servante, Emily K.
Pucker, Boas
Summers, William
Bowden, Sarah
Rahimi, Mehran
An, Kyungsook
An, Gynheung
Bouwmeester, Harro J.
Wallington, Emma J.
Oldroyd, Giles
Paszkowski, Uta.
author_facet Choi, Jeongmin
Lee, Tak
Cho, Jungnam
Servante, Emily K.
Pucker, Boas
Summers, William
Bowden, Sarah
Rahimi, Mehran
An, Kyungsook
An, Gynheung
Bouwmeester, Harro J.
Wallington, Emma J.
Oldroyd, Giles
Paszkowski, Uta.
author_sort Choi, Jeongmin
collection PubMed
description Most plants associate with beneficial arbuscular mycorrhizal (AM) fungi that facilitate soil nutrient acquisition. Prior to contact, partner recognition triggers reciprocal genetic remodelling to enable colonisation. The plant Dwarf14-Like (D14L) receptor conditions pre-symbiotic perception of AM fungi, and also detects the smoke constituent karrikin. D14L-dependent signalling mechanisms, underpinning AM symbiosis are unknown. Here, we present the identification of a negative regulator from rice, which operates downstream of the D14L receptor, corresponding to the homologue of the Arabidopsis thaliana Suppressor of MAX2-1 (AtSMAX1) that functions in karrikin signalling. We demonstrate that rice SMAX1 is a suppressor of AM symbiosis, negatively regulating fungal colonisation and transcription of crucial signalling components and conserved symbiosis genes. Similarly, rice SMAX1 negatively controls strigolactone biosynthesis, demonstrating an unexpected crosstalk between the strigolactone and karrikin signalling pathways. We conclude that removal of SMAX1, resulting from D14L signalling activation, de-represses essential symbiotic programmes and increases strigolactone hormone production.
format Online
Article
Text
id pubmed-7193599
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-71935992020-05-05 The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice Choi, Jeongmin Lee, Tak Cho, Jungnam Servante, Emily K. Pucker, Boas Summers, William Bowden, Sarah Rahimi, Mehran An, Kyungsook An, Gynheung Bouwmeester, Harro J. Wallington, Emma J. Oldroyd, Giles Paszkowski, Uta. Nat Commun Article Most plants associate with beneficial arbuscular mycorrhizal (AM) fungi that facilitate soil nutrient acquisition. Prior to contact, partner recognition triggers reciprocal genetic remodelling to enable colonisation. The plant Dwarf14-Like (D14L) receptor conditions pre-symbiotic perception of AM fungi, and also detects the smoke constituent karrikin. D14L-dependent signalling mechanisms, underpinning AM symbiosis are unknown. Here, we present the identification of a negative regulator from rice, which operates downstream of the D14L receptor, corresponding to the homologue of the Arabidopsis thaliana Suppressor of MAX2-1 (AtSMAX1) that functions in karrikin signalling. We demonstrate that rice SMAX1 is a suppressor of AM symbiosis, negatively regulating fungal colonisation and transcription of crucial signalling components and conserved symbiosis genes. Similarly, rice SMAX1 negatively controls strigolactone biosynthesis, demonstrating an unexpected crosstalk between the strigolactone and karrikin signalling pathways. We conclude that removal of SMAX1, resulting from D14L signalling activation, de-represses essential symbiotic programmes and increases strigolactone hormone production. Nature Publishing Group UK 2020-04-30 /pmc/articles/PMC7193599/ /pubmed/32355217 http://dx.doi.org/10.1038/s41467-020-16021-1 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Choi, Jeongmin
Lee, Tak
Cho, Jungnam
Servante, Emily K.
Pucker, Boas
Summers, William
Bowden, Sarah
Rahimi, Mehran
An, Kyungsook
An, Gynheung
Bouwmeester, Harro J.
Wallington, Emma J.
Oldroyd, Giles
Paszkowski, Uta.
The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice
title The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice
title_full The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice
title_fullStr The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice
title_full_unstemmed The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice
title_short The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice
title_sort negative regulator smax1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7193599/
https://www.ncbi.nlm.nih.gov/pubmed/32355217
http://dx.doi.org/10.1038/s41467-020-16021-1
work_keys_str_mv AT choijeongmin thenegativeregulatorsmax1controlsmycorrhizalsymbiosisandstrigolactonebiosynthesisinrice
AT leetak thenegativeregulatorsmax1controlsmycorrhizalsymbiosisandstrigolactonebiosynthesisinrice
AT chojungnam thenegativeregulatorsmax1controlsmycorrhizalsymbiosisandstrigolactonebiosynthesisinrice
AT servanteemilyk thenegativeregulatorsmax1controlsmycorrhizalsymbiosisandstrigolactonebiosynthesisinrice
AT puckerboas thenegativeregulatorsmax1controlsmycorrhizalsymbiosisandstrigolactonebiosynthesisinrice
AT summerswilliam thenegativeregulatorsmax1controlsmycorrhizalsymbiosisandstrigolactonebiosynthesisinrice
AT bowdensarah thenegativeregulatorsmax1controlsmycorrhizalsymbiosisandstrigolactonebiosynthesisinrice
AT rahimimehran thenegativeregulatorsmax1controlsmycorrhizalsymbiosisandstrigolactonebiosynthesisinrice
AT ankyungsook thenegativeregulatorsmax1controlsmycorrhizalsymbiosisandstrigolactonebiosynthesisinrice
AT angynheung thenegativeregulatorsmax1controlsmycorrhizalsymbiosisandstrigolactonebiosynthesisinrice
AT bouwmeesterharroj thenegativeregulatorsmax1controlsmycorrhizalsymbiosisandstrigolactonebiosynthesisinrice
AT wallingtonemmaj thenegativeregulatorsmax1controlsmycorrhizalsymbiosisandstrigolactonebiosynthesisinrice
AT oldroydgiles thenegativeregulatorsmax1controlsmycorrhizalsymbiosisandstrigolactonebiosynthesisinrice
AT paszkowskiuta thenegativeregulatorsmax1controlsmycorrhizalsymbiosisandstrigolactonebiosynthesisinrice
AT choijeongmin negativeregulatorsmax1controlsmycorrhizalsymbiosisandstrigolactonebiosynthesisinrice
AT leetak negativeregulatorsmax1controlsmycorrhizalsymbiosisandstrigolactonebiosynthesisinrice
AT chojungnam negativeregulatorsmax1controlsmycorrhizalsymbiosisandstrigolactonebiosynthesisinrice
AT servanteemilyk negativeregulatorsmax1controlsmycorrhizalsymbiosisandstrigolactonebiosynthesisinrice
AT puckerboas negativeregulatorsmax1controlsmycorrhizalsymbiosisandstrigolactonebiosynthesisinrice
AT summerswilliam negativeregulatorsmax1controlsmycorrhizalsymbiosisandstrigolactonebiosynthesisinrice
AT bowdensarah negativeregulatorsmax1controlsmycorrhizalsymbiosisandstrigolactonebiosynthesisinrice
AT rahimimehran negativeregulatorsmax1controlsmycorrhizalsymbiosisandstrigolactonebiosynthesisinrice
AT ankyungsook negativeregulatorsmax1controlsmycorrhizalsymbiosisandstrigolactonebiosynthesisinrice
AT angynheung negativeregulatorsmax1controlsmycorrhizalsymbiosisandstrigolactonebiosynthesisinrice
AT bouwmeesterharroj negativeregulatorsmax1controlsmycorrhizalsymbiosisandstrigolactonebiosynthesisinrice
AT wallingtonemmaj negativeregulatorsmax1controlsmycorrhizalsymbiosisandstrigolactonebiosynthesisinrice
AT oldroydgiles negativeregulatorsmax1controlsmycorrhizalsymbiosisandstrigolactonebiosynthesisinrice
AT paszkowskiuta negativeregulatorsmax1controlsmycorrhizalsymbiosisandstrigolactonebiosynthesisinrice