Cargando…

Surgery formulae for the Seiberg–Witten invariant of plumbed 3-manifolds

Assume that [Formula: see text] is a rational homology sphere plumbed 3-manifold associated with a connected negative definite graph [Formula: see text] . We consider the combinatorial multivariable Poincaré series associated with [Formula: see text] and its counting functions, which encode rich top...

Descripción completa

Detalles Bibliográficos
Autores principales: László, Tamás, Nagy, János, Némethi, András
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7194278/
https://www.ncbi.nlm.nih.gov/pubmed/32382244
http://dx.doi.org/10.1007/s13163-019-00297-z
Descripción
Sumario:Assume that [Formula: see text] is a rational homology sphere plumbed 3-manifold associated with a connected negative definite graph [Formula: see text] . We consider the combinatorial multivariable Poincaré series associated with [Formula: see text] and its counting functions, which encode rich topological information. Using the ‘periodic constant’ of the series (with reduced variables associated with an arbitrary subset [Formula: see text] of the set of vertices) we prove surgery formulae for the normalized Seiberg–Witten invariants: the periodic constant associated with [Formula: see text] appears as the difference of the Seiberg–Witten invariants of [Formula: see text] and [Formula: see text] for any [Formula: see text] .