Cargando…

Hypergeometric decomposition of symmetric K3 quartic pencils

We study the hypergeometric functions associated to five one-parameter deformations of Delsarte K3 quartic hypersurfaces in projective space. We compute all of their Picard–Fuchs differential equations; we count points using Gauss sums and rewrite this in terms of finite-field hypergeometric sums; t...

Descripción completa

Detalles Bibliográficos
Autores principales: Doran, Charles F., Kelly, Tyler L., Salerno, Adriana, Sperber, Steven, Voight, John, Whitcher, Ursula
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7194283/
https://www.ncbi.nlm.nih.gov/pubmed/32382704
http://dx.doi.org/10.1007/s40687-020-0203-3
Descripción
Sumario:We study the hypergeometric functions associated to five one-parameter deformations of Delsarte K3 quartic hypersurfaces in projective space. We compute all of their Picard–Fuchs differential equations; we count points using Gauss sums and rewrite this in terms of finite-field hypergeometric sums; then we match up each differential equation to a factor of the zeta function, and we write this in terms of global L-functions. This computation gives a complete, explicit description of the motives for these pencils in terms of hypergeometric motives.