Cargando…

Hypergeometric decomposition of symmetric K3 quartic pencils

We study the hypergeometric functions associated to five one-parameter deformations of Delsarte K3 quartic hypersurfaces in projective space. We compute all of their Picard–Fuchs differential equations; we count points using Gauss sums and rewrite this in terms of finite-field hypergeometric sums; t...

Descripción completa

Detalles Bibliográficos
Autores principales: Doran, Charles F., Kelly, Tyler L., Salerno, Adriana, Sperber, Steven, Voight, John, Whitcher, Ursula
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7194283/
https://www.ncbi.nlm.nih.gov/pubmed/32382704
http://dx.doi.org/10.1007/s40687-020-0203-3
_version_ 1783528321932328960
author Doran, Charles F.
Kelly, Tyler L.
Salerno, Adriana
Sperber, Steven
Voight, John
Whitcher, Ursula
author_facet Doran, Charles F.
Kelly, Tyler L.
Salerno, Adriana
Sperber, Steven
Voight, John
Whitcher, Ursula
author_sort Doran, Charles F.
collection PubMed
description We study the hypergeometric functions associated to five one-parameter deformations of Delsarte K3 quartic hypersurfaces in projective space. We compute all of their Picard–Fuchs differential equations; we count points using Gauss sums and rewrite this in terms of finite-field hypergeometric sums; then we match up each differential equation to a factor of the zeta function, and we write this in terms of global L-functions. This computation gives a complete, explicit description of the motives for these pencils in terms of hypergeometric motives.
format Online
Article
Text
id pubmed-7194283
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-71942832020-05-05 Hypergeometric decomposition of symmetric K3 quartic pencils Doran, Charles F. Kelly, Tyler L. Salerno, Adriana Sperber, Steven Voight, John Whitcher, Ursula Res Math Sci Research We study the hypergeometric functions associated to five one-parameter deformations of Delsarte K3 quartic hypersurfaces in projective space. We compute all of their Picard–Fuchs differential equations; we count points using Gauss sums and rewrite this in terms of finite-field hypergeometric sums; then we match up each differential equation to a factor of the zeta function, and we write this in terms of global L-functions. This computation gives a complete, explicit description of the motives for these pencils in terms of hypergeometric motives. Springer International Publishing 2020-03-16 2020 /pmc/articles/PMC7194283/ /pubmed/32382704 http://dx.doi.org/10.1007/s40687-020-0203-3 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Research
Doran, Charles F.
Kelly, Tyler L.
Salerno, Adriana
Sperber, Steven
Voight, John
Whitcher, Ursula
Hypergeometric decomposition of symmetric K3 quartic pencils
title Hypergeometric decomposition of symmetric K3 quartic pencils
title_full Hypergeometric decomposition of symmetric K3 quartic pencils
title_fullStr Hypergeometric decomposition of symmetric K3 quartic pencils
title_full_unstemmed Hypergeometric decomposition of symmetric K3 quartic pencils
title_short Hypergeometric decomposition of symmetric K3 quartic pencils
title_sort hypergeometric decomposition of symmetric k3 quartic pencils
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7194283/
https://www.ncbi.nlm.nih.gov/pubmed/32382704
http://dx.doi.org/10.1007/s40687-020-0203-3
work_keys_str_mv AT dorancharlesf hypergeometricdecompositionofsymmetrick3quarticpencils
AT kellytylerl hypergeometricdecompositionofsymmetrick3quarticpencils
AT salernoadriana hypergeometricdecompositionofsymmetrick3quarticpencils
AT sperbersteven hypergeometricdecompositionofsymmetrick3quarticpencils
AT voightjohn hypergeometricdecompositionofsymmetrick3quarticpencils
AT whitcherursula hypergeometricdecompositionofsymmetrick3quarticpencils