Cargando…

Prediction of cell position using single-cell transcriptomic data: an iterative procedure

Single-cell sequencing reveals cellular heterogeneity but not cell localization. However, by combining single-cell transcriptomic data with a reference atlas of a small set of genes, it would be possible to predict the position of individual cells and reconstruct the spatial expression profile of th...

Descripción completa

Detalles Bibliográficos
Autores principales: Alonso, Andrés M., Carrea, Alejandra, Diambra, Luis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: F1000 Research Limited 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7194340/
https://www.ncbi.nlm.nih.gov/pubmed/32399185
http://dx.doi.org/10.12688/f1000research.20715.2
_version_ 1783528326711738368
author Alonso, Andrés M.
Carrea, Alejandra
Diambra, Luis
author_facet Alonso, Andrés M.
Carrea, Alejandra
Diambra, Luis
author_sort Alonso, Andrés M.
collection PubMed
description Single-cell sequencing reveals cellular heterogeneity but not cell localization. However, by combining single-cell transcriptomic data with a reference atlas of a small set of genes, it would be possible to predict the position of individual cells and reconstruct the spatial expression profile of thousands of genes reported in the single-cell study. With the purpose of developing new algorithms, the Dialogue for Reverse Engineering Assessments and Methods (DREAM) consortium organized a crowd-sourced competition known as DREAM Single Cell Transcriptomics Challenge (SCTC). Within this context, we describe here our proposed procedures for adequate reference genes selection, and an iterative procedure to predict spatial expression profile of other genes.
format Online
Article
Text
id pubmed-7194340
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher F1000 Research Limited
record_format MEDLINE/PubMed
spelling pubmed-71943402020-05-11 Prediction of cell position using single-cell transcriptomic data: an iterative procedure Alonso, Andrés M. Carrea, Alejandra Diambra, Luis F1000Res Method Article Single-cell sequencing reveals cellular heterogeneity but not cell localization. However, by combining single-cell transcriptomic data with a reference atlas of a small set of genes, it would be possible to predict the position of individual cells and reconstruct the spatial expression profile of thousands of genes reported in the single-cell study. With the purpose of developing new algorithms, the Dialogue for Reverse Engineering Assessments and Methods (DREAM) consortium organized a crowd-sourced competition known as DREAM Single Cell Transcriptomics Challenge (SCTC). Within this context, we describe here our proposed procedures for adequate reference genes selection, and an iterative procedure to predict spatial expression profile of other genes. F1000 Research Limited 2020-04-09 /pmc/articles/PMC7194340/ /pubmed/32399185 http://dx.doi.org/10.12688/f1000research.20715.2 Text en Copyright: © 2020 Alonso AM et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Method Article
Alonso, Andrés M.
Carrea, Alejandra
Diambra, Luis
Prediction of cell position using single-cell transcriptomic data: an iterative procedure
title Prediction of cell position using single-cell transcriptomic data: an iterative procedure
title_full Prediction of cell position using single-cell transcriptomic data: an iterative procedure
title_fullStr Prediction of cell position using single-cell transcriptomic data: an iterative procedure
title_full_unstemmed Prediction of cell position using single-cell transcriptomic data: an iterative procedure
title_short Prediction of cell position using single-cell transcriptomic data: an iterative procedure
title_sort prediction of cell position using single-cell transcriptomic data: an iterative procedure
topic Method Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7194340/
https://www.ncbi.nlm.nih.gov/pubmed/32399185
http://dx.doi.org/10.12688/f1000research.20715.2
work_keys_str_mv AT alonsoandresm predictionofcellpositionusingsinglecelltranscriptomicdataaniterativeprocedure
AT carreaalejandra predictionofcellpositionusingsinglecelltranscriptomicdataaniterativeprocedure
AT diambraluis predictionofcellpositionusingsinglecelltranscriptomicdataaniterativeprocedure