Cargando…
Prediction of cell position using single-cell transcriptomic data: an iterative procedure
Single-cell sequencing reveals cellular heterogeneity but not cell localization. However, by combining single-cell transcriptomic data with a reference atlas of a small set of genes, it would be possible to predict the position of individual cells and reconstruct the spatial expression profile of th...
Autores principales: | Alonso, Andrés M., Carrea, Alejandra, Diambra, Luis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7194340/ https://www.ncbi.nlm.nih.gov/pubmed/32399185 http://dx.doi.org/10.12688/f1000research.20715.2 |
Ejemplares similares
-
Systems Biology Approach to Model the Life Cycle of Trypanosoma cruzi
por: Carrea, Alejandra, et al.
Publicado: (2016) -
Commentary: Systems Biology Approach to Model the Life Cycle of Trypanosoma cruzi
por: Carrea, Alejandra, et al.
Publicado: (2017) -
Iterative epigenomic analyses in the same single cell
por: Ohnuki, Hidetaka, et al.
Publicado: (2021) -
Bicodon bias can determine the role of synonymous SNPs in human diseases
por: McCarthy, Christina, et al.
Publicado: (2017) -
Combinatorial prediction of marker panels from single‐cell transcriptomic data
por: Delaney, Conor, et al.
Publicado: (2019)