Cargando…
The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional theory properties for molecules
Maximum diversification of data is a central theme in building generalized and accurate machine learning (ML) models. In chemistry, ML has been used to develop models for predicting molecular properties, for example quantum mechanics (QM) calculated potential energy surfaces and atomic charge models...
Autores principales: | Smith, Justin S., Zubatyuk, Roman, Nebgen, Benjamin, Lubbers, Nicholas, Barros, Kipton, Roitberg, Adrian E., Isayev, Olexandr, Tretiak, Sergei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7195467/ https://www.ncbi.nlm.nih.gov/pubmed/32358545 http://dx.doi.org/10.1038/s41597-020-0473-z |
Ejemplares similares
-
ANI-1, A data set of 20 million calculated off-equilibrium conformations for organic molecules
por: Smith, Justin S., et al.
Publicado: (2017) -
Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning
por: Smith, Justin S., et al.
Publicado: (2019) -
Teaching a neural network to attach and detach electrons from molecules
por: Zubatyuk, Roman, et al.
Publicado: (2021) -
ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost
por: Smith, J. S., et al.
Publicado: (2017) -
Deep learning of dynamically responsive chemical Hamiltonians with semiempirical quantum mechanics
por: Zhou, Guoqing, et al.
Publicado: (2022)