Cargando…

Morphology and mobility as tools to control and unprecedentedly enhance X-ray sensitivity in organic thin-films

Organic semiconductor materials exhibit a great potential for the realization of large-area solution-processed devices able to directly detect high-energy radiation. However, only few works investigated on the mechanism of ionizing radiation detection in this class of materials, so far. In this work...

Descripción completa

Detalles Bibliográficos
Autores principales: Temiño, Inés, Basiricò, Laura, Fratelli, Ilaria, Tamayo, Adrián, Ciavatti, Andrea, Mas-Torrent, Marta, Fraboni, Beatrice
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7195493/
https://www.ncbi.nlm.nih.gov/pubmed/32358502
http://dx.doi.org/10.1038/s41467-020-15974-7
Descripción
Sumario:Organic semiconductor materials exhibit a great potential for the realization of large-area solution-processed devices able to directly detect high-energy radiation. However, only few works investigated on the mechanism of ionizing radiation detection in this class of materials, so far. In this work we investigate the physical processes behind X-ray photoconversion employing bis-(triisopropylsilylethynyl)-pentacene thin-films deposited by bar-assisted meniscus shearing. The thin film coating speed and the use of bis-(triisopropylsilylethynyl)-pentacene:polystyrene blends are explored as tools to control and enhance the detection capability of the devices, by tuning the thin-film morphology and the carrier mobility. The so-obtained detectors reach a record sensitivity of 1.3 · 10(4) µC/Gy·cm(2), the highest value reported for organic-based direct X-ray detectors and a very low minimum detectable dose rate of 35 µGy/s. Thus, the employment of organic large-area direct detectors for X-ray radiation in real-life applications can be foreseen.