Cargando…
Clustering benchmark datasets exploiting the fundamental clustering problems
The Fundamental Clustering Problems Suite (FCPS) offers a variety of clustering challenges that any algorithm should be able to handle given real-world data. The FCPS consists of datasets with known a priori classifications that are to be reproduced by the algorithm. The datasets are intentionally c...
Autores principales: | Thrun, Michael C., Ultsch, Alfred |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7195520/ https://www.ncbi.nlm.nih.gov/pubmed/32373681 http://dx.doi.org/10.1016/j.dib.2020.105501 |
Ejemplares similares
-
Benchmark dataset for the Asymmetric and Clustered Vehicle Routing Problem with Simultaneous Pickup and Deliveries, Variable Costs and Forbidden Paths
por: Osaba, Eneko
Publicado: (2020) -
Distance-based clustering challenges for unbiased benchmarking studies
por: Thrun, Michael C.
Publicado: (2021) -
Publisher Correction: Distance-based clustering challenges for unbiased benchmarking studies
por: Thrun, Michael C.
Publicado: (2021) -
Sustainable aggregate production planning in the chemical process industry - A benchmark problem and dataset
por: Brandenburg, Marcus, et al.
Publicado: (2018) -
Uncovering High-dimensional Structures of Projections from Dimensionality Reduction Methods
por: Thrun, Michael C., et al.
Publicado: (2020)