Cargando…
Negative binomial additive model for RNA-Seq data analysis
BACKGROUND: High-throughput sequencing experiments followed by differential expression analysis is a widely used approach for detecting genomic biomarkers. A fundamental step in differential expression analysis is to model the association between gene counts and covariates of interest. Existing mode...
Autores principales: | Ren, Xu, Kuan, Pei-Fen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7195715/ https://www.ncbi.nlm.nih.gov/pubmed/32357831 http://dx.doi.org/10.1186/s12859-020-3506-x |
Ejemplares similares
-
NBZIMM: negative binomial and zero-inflated mixed models, with application to microbiome/metagenomics data analysis
por: Zhang, Xinyan, et al.
Publicado: (2020) -
NBLDA: negative binomial linear discriminant analysis for RNA-Seq data
por: Dong, Kai, et al.
Publicado: (2016) -
Data-based RNA-seq simulations by binomial thinning
por: Gerard, David
Publicado: (2020) -
lmerSeq: an R package for analyzing transformed RNA-Seq data with linear mixed effects models
por: Vestal, Brian E., et al.
Publicado: (2022) -
T-REx: Transcriptome analysis webserver for RNA-seq Expression data
por: de Jong, Anne, et al.
Publicado: (2015)