Cargando…

Non-invasive ultrasonic neuromodulation of neuronal excitability for treatment of epilepsy

Non-invasive low-intensity pulsed ultrasound has been employed for direct neuro-modulation. However, its range and effectiveness for different neurological disorders have not been fully elucidated. Methods: We used multiple approaches of electrophysiology, immunohistochemistry, and behavioral tests...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Zhengrong, Meng, Long, Zou, Junjie, Zhou, Wei, Huang, Xiaowei, Xue, Shan, Bian, Tianyuan, Yuan, Tifei, Niu, Lili, Guo, Yanwu, Zheng, Hairong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ivyspring International Publisher 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7196311/
https://www.ncbi.nlm.nih.gov/pubmed/32373225
http://dx.doi.org/10.7150/thno.40520
Descripción
Sumario:Non-invasive low-intensity pulsed ultrasound has been employed for direct neuro-modulation. However, its range and effectiveness for different neurological disorders have not been fully elucidated. Methods: We used multiple approaches of electrophysiology, immunohistochemistry, and behavioral tests as potential epilepsy treatments in non-human primate model of epilepsy and human epileptic tissues. Low-intensity pulsed ultrasound with a frequency of 750 kHz and acoustic pressure of 0.35 MPa (the spatial peak pulse average intensity, I(SPPA) = 2.02 W/cm(2)) were delivered to the epileptogenic foci in five penicillin-induced epileptic monkey models. An ultrasound neuro-modulation system with a frequency of 28 MHz and acoustic pressure of 0.13 MPa (I(SPPA) = 465 mW/cm(2)) compatible with patch-clamp systems was used to stimulate the brain slices prepared from fifteen patients with epilepsy. Results: After 30 min of low-intensity pulsed ultrasound treatment, total seizure count for 16 hours (sham group: 107.7 ± 1.2, ultrasound group: 66.0 ± 7.9, P < 0.01) and seizure frequency per hour (sham group: 15.6 ± 1.2, ultrasound group: 9.6 ± 1.5, P < 0.05) were significantly reduced. The therapeutic efficacy and underlying potential mechanism of low-intensity pulsed ultrasound treatment were studied in biopsy specimens from epileptic patients in vitro. Ultrasound stimulation could inhibit epileptiform activities with an efficiency exceeding 65%, potentially due to adjusting the balance of excitatory-inhibitory (E/I) synaptic inputs by the increased activity of local inhibitory neurons. Conclusion: Herein, we demonstrated for the first time that low-intensity pulsed ultrasound improves electrophysiological activities and behavioral outcomes in a non-human primate model of epilepsy and suppresses epileptiform activities of neurons from human epileptic slices. The study provides evidence for the potential clinical use of non-invasive low-intensity pulsed ultrasound stimulation for epilepsy treatment.