Cargando…
Mobilising community networks for early identification of tuberculosis and treatment initiation in Cambodia: an evaluation of a seed-and-recruit model
BACKGROUND AND OBJECTIVES: The effects of active case finding (ACF) models that mobilise community networks for early identification and treatment of tuberculosis (TB) remain unknown. We investigated and compared the effect of community-based ACF using a seed-and-recruit model with one-off roving AC...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
European Respiratory Society
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7196668/ https://www.ncbi.nlm.nih.gov/pubmed/32391397 http://dx.doi.org/10.1183/23120541.00368-2019 |
_version_ | 1783528756669841408 |
---|---|
author | Teo, Alvin Kuo Jing Prem, Kiesha Tuot, Sovannary Ork, Chetra Eng, Sothearith Pande, Tripti Chry, Monyrath Hsu, Li Yang Yi, Siyan |
author_facet | Teo, Alvin Kuo Jing Prem, Kiesha Tuot, Sovannary Ork, Chetra Eng, Sothearith Pande, Tripti Chry, Monyrath Hsu, Li Yang Yi, Siyan |
author_sort | Teo, Alvin Kuo Jing |
collection | PubMed |
description | BACKGROUND AND OBJECTIVES: The effects of active case finding (ACF) models that mobilise community networks for early identification and treatment of tuberculosis (TB) remain unknown. We investigated and compared the effect of community-based ACF using a seed-and-recruit model with one-off roving ACF and passive case finding (PCF) on the time to treatment initiation and identification of bacteriologically confirmed TB. METHODS: In this retrospective cohort study conducted in 12 operational districts in Cambodia, we assessed relationships between ACF models and: 1) the time to treatment initiation using Cox proportional hazards regression; and 2) the identification of bacteriologically confirmed TB using modified Poisson regression with robust sandwich variance. RESULTS: We included 728 adults with TB, of whom 36% were identified via the community-based ACF using a seed-and-recruit model. We found community-based ACF using a seed-and-recruit model was associated with shorter delay to treatment initiation compared to one-off roving ACF (hazard ratio 0.81, 95% CI 0.68–0.96). Compared to one-off roving ACF and PCF, community-based ACF using a seed-and-recruit model was 45% (prevalence ratio (PR) 1.45, 95% CI 1.19–1.78) and 39% (PR 1.39, 95% CI 0.99–1.94) more likely to find and detect bacteriologically confirmed TB, respectively. CONCLUSION: Mobilising community networks to find TB cases was associated with early initiation of TB treatment in Cambodia. This approach was more likely to find bacteriologically confirmed TB cases, contributing to the reduction of risk of transmission within the community. |
format | Online Article Text |
id | pubmed-7196668 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | European Respiratory Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-71966682020-05-08 Mobilising community networks for early identification of tuberculosis and treatment initiation in Cambodia: an evaluation of a seed-and-recruit model Teo, Alvin Kuo Jing Prem, Kiesha Tuot, Sovannary Ork, Chetra Eng, Sothearith Pande, Tripti Chry, Monyrath Hsu, Li Yang Yi, Siyan ERJ Open Res Original Articles BACKGROUND AND OBJECTIVES: The effects of active case finding (ACF) models that mobilise community networks for early identification and treatment of tuberculosis (TB) remain unknown. We investigated and compared the effect of community-based ACF using a seed-and-recruit model with one-off roving ACF and passive case finding (PCF) on the time to treatment initiation and identification of bacteriologically confirmed TB. METHODS: In this retrospective cohort study conducted in 12 operational districts in Cambodia, we assessed relationships between ACF models and: 1) the time to treatment initiation using Cox proportional hazards regression; and 2) the identification of bacteriologically confirmed TB using modified Poisson regression with robust sandwich variance. RESULTS: We included 728 adults with TB, of whom 36% were identified via the community-based ACF using a seed-and-recruit model. We found community-based ACF using a seed-and-recruit model was associated with shorter delay to treatment initiation compared to one-off roving ACF (hazard ratio 0.81, 95% CI 0.68–0.96). Compared to one-off roving ACF and PCF, community-based ACF using a seed-and-recruit model was 45% (prevalence ratio (PR) 1.45, 95% CI 1.19–1.78) and 39% (PR 1.39, 95% CI 0.99–1.94) more likely to find and detect bacteriologically confirmed TB, respectively. CONCLUSION: Mobilising community networks to find TB cases was associated with early initiation of TB treatment in Cambodia. This approach was more likely to find bacteriologically confirmed TB cases, contributing to the reduction of risk of transmission within the community. European Respiratory Society 2020-05-04 /pmc/articles/PMC7196668/ /pubmed/32391397 http://dx.doi.org/10.1183/23120541.00368-2019 Text en Copyright ©ERS 2020 http://creativecommons.org/licenses/by-nc/4.0/This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. |
spellingShingle | Original Articles Teo, Alvin Kuo Jing Prem, Kiesha Tuot, Sovannary Ork, Chetra Eng, Sothearith Pande, Tripti Chry, Monyrath Hsu, Li Yang Yi, Siyan Mobilising community networks for early identification of tuberculosis and treatment initiation in Cambodia: an evaluation of a seed-and-recruit model |
title | Mobilising community networks for early identification of tuberculosis and treatment initiation in Cambodia: an evaluation of a seed-and-recruit model |
title_full | Mobilising community networks for early identification of tuberculosis and treatment initiation in Cambodia: an evaluation of a seed-and-recruit model |
title_fullStr | Mobilising community networks for early identification of tuberculosis and treatment initiation in Cambodia: an evaluation of a seed-and-recruit model |
title_full_unstemmed | Mobilising community networks for early identification of tuberculosis and treatment initiation in Cambodia: an evaluation of a seed-and-recruit model |
title_short | Mobilising community networks for early identification of tuberculosis and treatment initiation in Cambodia: an evaluation of a seed-and-recruit model |
title_sort | mobilising community networks for early identification of tuberculosis and treatment initiation in cambodia: an evaluation of a seed-and-recruit model |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7196668/ https://www.ncbi.nlm.nih.gov/pubmed/32391397 http://dx.doi.org/10.1183/23120541.00368-2019 |
work_keys_str_mv | AT teoalvinkuojing mobilisingcommunitynetworksforearlyidentificationoftuberculosisandtreatmentinitiationincambodiaanevaluationofaseedandrecruitmodel AT premkiesha mobilisingcommunitynetworksforearlyidentificationoftuberculosisandtreatmentinitiationincambodiaanevaluationofaseedandrecruitmodel AT tuotsovannary mobilisingcommunitynetworksforearlyidentificationoftuberculosisandtreatmentinitiationincambodiaanevaluationofaseedandrecruitmodel AT orkchetra mobilisingcommunitynetworksforearlyidentificationoftuberculosisandtreatmentinitiationincambodiaanevaluationofaseedandrecruitmodel AT engsothearith mobilisingcommunitynetworksforearlyidentificationoftuberculosisandtreatmentinitiationincambodiaanevaluationofaseedandrecruitmodel AT pandetripti mobilisingcommunitynetworksforearlyidentificationoftuberculosisandtreatmentinitiationincambodiaanevaluationofaseedandrecruitmodel AT chrymonyrath mobilisingcommunitynetworksforearlyidentificationoftuberculosisandtreatmentinitiationincambodiaanevaluationofaseedandrecruitmodel AT hsuliyang mobilisingcommunitynetworksforearlyidentificationoftuberculosisandtreatmentinitiationincambodiaanevaluationofaseedandrecruitmodel AT yisiyan mobilisingcommunitynetworksforearlyidentificationoftuberculosisandtreatmentinitiationincambodiaanevaluationofaseedandrecruitmodel |