Cargando…

Profile of bile acid subspecies is similar in blood and follicular fluid of cattle

The composition of follicular fluid (FF) has an impact on the developmental capacity of the oocyte and the resulting embryo. FF is composed of blood plasma constituents which cross the blood follicular barrier and the secretory components of granulosa and theca cells. Moreover, it has been shown rec...

Descripción completa

Detalles Bibliográficos
Autores principales: Blaschka, Carina, Sánchez‐Guijo, Alberto, Wudy, Stefan A., Wrenzycki, Christine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7196682/
https://www.ncbi.nlm.nih.gov/pubmed/31713347
http://dx.doi.org/10.1002/vms3.217
Descripción
Sumario:The composition of follicular fluid (FF) has an impact on the developmental capacity of the oocyte and the resulting embryo. FF is composed of blood plasma constituents which cross the blood follicular barrier and the secretory components of granulosa and theca cells. Moreover, it has been shown recently that follicular cells have the ability to synthesize bile acids (BAs). BAs are present in several fluids of mammals especially in bile, blood and urine. FF is an essential impacting factor on the oocyte quality and therefore resulting embryos. To achieve a better understanding of this subject, the presence and concentration of BAs were measured in fluid collected from bovine follicles, categorized according to their size, throughout two entire oestrus cycles and compared to those in blood and urine. The body fluids were collected during the same examination procedure and in total samples from four heifers were obtained. A broad spectrum of 11 BA derivatives was measured applying liquid chromatography–tandem mass spectrometry (LC‐MS/MS). The simultaneous and direct quantification of BAs in different body fluids of cattle are reported. Within the follicular fluid, blood and urine, cholic acid and glycocholic acid are the dominant BA subspecies irrespective of the oestrus cycle stage. Moreover, BA concentrations in blood compared to those in the FF were similar. For the first time these results clearly highlight the presence of different BA subspecies in FF, blood and urine during the oestrus cycle in cattle.