Cargando…
Deep Learning in CT Images: Automated Pulmonary Nodule Detection for Subsequent Management Using Convolutional Neural Network
PURPOSE: The purpose of this study is to compare the detection performance of the 3-dimensional convolutional neural network (3D CNN)-based computer-aided detection (CAD) models with radiologists of different levels of experience in detecting pulmonary nodules on thin-section computed tomography (C...
Autores principales: | Xu, Yi-Ming, Zhang, Teng, Xu, Hai, Qi, Liang, Zhang, Wei, Zhang, Yu-Dong, Gao, Da-Shan, Yuan, Mei, Yu, Tong-Fu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7196793/ https://www.ncbi.nlm.nih.gov/pubmed/32425607 http://dx.doi.org/10.2147/CMAR.S239927 |
Ejemplares similares
-
Deep convolutional neural network based on CT images of pulmonary nodules in the lungs of adolescent and young adult patients with osteosarcoma
por: Ni, Yun Long, et al.
Publicado: (2023) -
Automated segmentation of craniopharyngioma on MR images using U-Net-based deep convolutional neural network
por: Chen, Chaoyue, et al.
Publicado: (2022) -
Pulmonary Nodule Classification with Deep Convolutional Neural Networks on Computed Tomography Images
por: Li, Wei, et al.
Publicado: (2016) -
3D multi-scale deep convolutional neural networks for pulmonary nodule detection
por: Peng, Haixin, et al.
Publicado: (2021) -
An integrated convolutional neural network for classifying small pulmonary solid nodules
por: Mei, Mengqing, et al.
Publicado: (2023)