Cargando…
A Topological Data Analysis Approach on Predicting Phenotypes from Gene Expression Data
The goal of this study was to investigate if gene expression measured from RNA sequencing contains enough signal to separate healthy and afflicted individuals in the context of phenotype prediction. We observed that standard machine learning methods alone performed somewhat poorly on the disease phe...
Autores principales: | Mandal, Sayan, Guzmán-Sáenz, Aldo, Haiminen, Niina, Basu, Saugata, Parida, Laxmi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7197058/ http://dx.doi.org/10.1007/978-3-030-42266-0_14 |
Ejemplares similares
-
Signal enrichment with strain-level resolution in metagenomes using topological data analysis
por: Guzmán-Sáenz, Aldo, et al.
Publicado: (2019) -
Topology and redescriptions detect multiple alternative biological pathways from clinical phenotypes
por: Karisani, Negin, et al.
Publicado: (2022) -
SimBA: simulation algorithm to fit extant-population distributions
por: Parida, Laxmi, et al.
Publicado: (2015) -
Assessing pooled BAC and whole genome shotgun strategies for assembly of complex genomes
por: Haiminen, Niina, et al.
Publicado: (2011) -
Gene expression data classification using topology and machine learning models
por: Dey, Tamal K., et al.
Publicado: (2022)