Cargando…

BOAssembler: A Bayesian Optimization Framework to Improve RNA-Seq Assembly Performance

High throughput sequencing of RNA (RNA-Seq) can provide us with millions of short fragments of RNA transcripts from a sample. How to better recover the original RNA transcripts from those fragments (RNA-Seq assembly) is still a difficult task. For example, RNA-Seq assembly tools typically require hy...

Descripción completa

Detalles Bibliográficos
Autores principales: Mao, Shunfu, Jiang, Yihan, Mathew, Edwin Basil, Kannan, Sreeram
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7197064/
http://dx.doi.org/10.1007/978-3-030-42266-0_15
Descripción
Sumario:High throughput sequencing of RNA (RNA-Seq) can provide us with millions of short fragments of RNA transcripts from a sample. How to better recover the original RNA transcripts from those fragments (RNA-Seq assembly) is still a difficult task. For example, RNA-Seq assembly tools typically require hyper-parameter tuning to achieve good performance for particular datasets. This kind of tuning is usually unintuitive and time-consuming. Consequently, users often resort to default parameters, which do not guarantee consistent good performance for various datasets. Results: Here we propose BOAssembler, a framework that enables end-to-end automatic tuning of RNA-Seq assemblers, based on Bayesian Optimization principles. Experiments show this data-driven approach is effective to improve the overall assembly performance. The approach would be helpful for downstream (e.g. gene, protein, cell) analysis, and more broadly, for future bioinformatics benchmark studies. Availability: https://github.com/shunfumao/boassembler.