Cargando…

BESTox: A Convolutional Neural Network Regression Model Based on Binary-Encoded SMILES for Acute Oral Toxicity Prediction of Chemical Compounds

Compound toxicity prediction is a very challenging and critical task in the drug discovery and design field. Traditionally, cell or animal-based experiments are required to confirm the acute oral toxicity of chemical compounds. However, these methods are often restricted by availability of experimen...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Jiarui, Cheong, Hong-Hin, Siu, Shirley Weng In
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7197065/
http://dx.doi.org/10.1007/978-3-030-42266-0_12
Descripción
Sumario:Compound toxicity prediction is a very challenging and critical task in the drug discovery and design field. Traditionally, cell or animal-based experiments are required to confirm the acute oral toxicity of chemical compounds. However, these methods are often restricted by availability of experimental facilities, long experimentation time, and high cost. In this paper, we propose a novel convolutional neural network regression model, named BESTox, to predict the acute oral toxicity ([Formula: see text]) of chemical compounds. This model learns the compositional and chemical properties of compounds from their two-dimensional binary matrices. Each matrix encodes the occurrences of certain atom types, number of bonded hydrogens, atom charge, valence, ring, degree, aromaticity, chirality, and hybridization along the SMILES string of a given compound. In a benchmark experiment using a dataset of 7413 observations (train/test 5931/1482), BESTox achieved a squared correlation coefficient ([Formula: see text]) of 0.619, root-mean-squared error (RMSE) of 0.603, and mean absolute error (MAE) of 0.433. Despite of the use of a shallow model architecture and simple molecular descriptors, our method performs comparably against two recently published models.