Cargando…
BESTox: A Convolutional Neural Network Regression Model Based on Binary-Encoded SMILES for Acute Oral Toxicity Prediction of Chemical Compounds
Compound toxicity prediction is a very challenging and critical task in the drug discovery and design field. Traditionally, cell or animal-based experiments are required to confirm the acute oral toxicity of chemical compounds. However, these methods are often restricted by availability of experimen...
Autores principales: | Chen, Jiarui, Cheong, Hong-Hin, Siu, Shirley Weng In |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7197065/ http://dx.doi.org/10.1007/978-3-030-42266-0_12 |
Ejemplares similares
-
Chemical toxicity prediction based on semi-supervised learning and graph convolutional neural network
por: Chen, Jiarui, et al.
Publicado: (2021) -
Convolutional neural network based on SMILES representation of compounds for detecting chemical motif
por: Hirohara, Maya, et al.
Publicado: (2018) -
CurlySMILES: a chemical language to customize and annotate encodings of molecular and nanodevice structures
por: Drefahl, Axel
Publicado: (2011) -
Sparse modeling of chemical bonding in binary compounds
por: Kanda, Yosuke, et al.
Publicado: (2019) -
Primer on binary logistic regression
por: Harris, Jenine K
Publicado: (2021)