Cargando…

The rRNA m(6)A methyltransferase METTL5 is involved in pluripotency and developmental programs

Covalent chemical modifications of cellular RNAs directly impact all biological processes. However, our mechanistic understanding of the enzymes catalyzing these modifications, their substrates and biological functions, remains vague. Amongst RNA modifications N(6)-methyladenosine (m(6)A) is widespr...

Descripción completa

Detalles Bibliográficos
Autores principales: Ignatova, Valentina V., Stolz, Paul, Kaiser, Steffen, Gustafsson, Tobias H., Lastres, Palma Rico, Sanz-Moreno, Adrián, Cho, Yi-Li, Amarie, Oana V., Aguilar-Pimentel, Antonio, Klein-Rodewald, Tanja, Calzada-Wack, Julia, Becker, Lore, Marschall, Susan, Kraiger, Markus, Garrett, Lillian, Seisenberger, Claudia, Hölter, Sabine M., Borland, Kayla, Van De Logt, Erik, Jansen, Pascal W.T.C., Baltissen, Marijke P., Valenta, Magdalena, Vermeulen, Michiel, Wurst, Wolfgang, Gailus-Durner, Valerie, Fuchs, Helmut, Hrabe de Angelis, Martin, Rando, Oliver J., Kellner, Stefanie M., Bultmann, Sebastian, Schneider, Robert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7197354/
https://www.ncbi.nlm.nih.gov/pubmed/32217665
http://dx.doi.org/10.1101/gad.333369.119
Descripción
Sumario:Covalent chemical modifications of cellular RNAs directly impact all biological processes. However, our mechanistic understanding of the enzymes catalyzing these modifications, their substrates and biological functions, remains vague. Amongst RNA modifications N(6)-methyladenosine (m(6)A) is widespread and found in messenger (mRNA), ribosomal (rRNA), and noncoding RNAs. Here, we undertook a systematic screen to uncover new RNA methyltransferases. We demonstrate that the methyltransferase-like 5 (METTL5) protein catalyzes m(6)A in 18S rRNA at position A(1832). We report that absence of Mettl5 in mouse embryonic stem cells (mESCs) results in a decrease in global translation rate, spontaneous loss of pluripotency, and compromised differentiation potential. METTL5-deficient mice are born at non-Mendelian rates and develop morphological and behavioral abnormalities. Importantly, mice lacking METTL5 recapitulate symptoms of patients with DNA variants in METTL5, thereby providing a new mouse disease model. Overall, our biochemical, molecular, and in vivo characterization highlights the importance of m(6)A in rRNA in stemness, differentiation, development, and diseases.