Cargando…

The Taste Receptor TAS1R3 Regulates Small Intestinal Tuft Cell Homeostasis

Tuft cells are an epithelial cell type critical for initiating type 2 immune responses to parasites and protozoa in the small intestine. To respond to these stimuli, intestinal tuft cells use taste chemosensory signaling pathways, but the role of taste receptors in type 2 immunity is poorly understo...

Descripción completa

Detalles Bibliográficos
Autores principales: Howitt, Michael R., Cao, Y. Grace, Gologorsky, Matthew B., Li, Jessica A., Haber, Adam L., Biton, Moshe, Lang, Jessica, Michaud, Monia, Regev, Aviv, Garrett, Wendy S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7197368/
https://www.ncbi.nlm.nih.gov/pubmed/31980480
http://dx.doi.org/10.4049/immunohorizons.1900099
Descripción
Sumario:Tuft cells are an epithelial cell type critical for initiating type 2 immune responses to parasites and protozoa in the small intestine. To respond to these stimuli, intestinal tuft cells use taste chemosensory signaling pathways, but the role of taste receptors in type 2 immunity is poorly understood. In this study, we show that the taste receptor TAS1R3, which detects sweet and umami in the tongue, also regulates tuft cell responses in the distal small intestine. BALB/c mice, which have an inactive form of TAS1R3, as well as Tas1r3-deficient C57BL6/J mice both have severely impaired responses to tuft cell–inducing signals in the ileum, including the protozoa Tritrichomonas muris and succinate. In contrast, TAS1R3 is not required to mount an immune response to the helminth Heligmosomoides polygyrus, which infects the proximal small intestine. Examination of uninfected Tas1r3(−/−) mice revealed a modest reduction in the number of tuft cells in the proximal small intestine but a severe decrease in the distal small intestine at homeostasis. Together, these results suggest that TAS1R3 influences intestinal immunity by shaping the epithelial cell landscape at steady-state. ImmunoHorizons, 2020, 4: 23–32.