Cargando…

Larvicidal toxicity of Metarhizium anisopliae metabolites against three mosquito species and non-targeting organisms

BACKGROUND: The fungal toxin acts as effective, low-cost chemical substances for pest control worldwide and also an alternative to synthetic insecticides. This study assessed the larvicidal potential of Metarhizium anisopliae fungi derived metabolites against Aedes aegypti, Anopheles stephensi, Cule...

Descripción completa

Detalles Bibliográficos
Autores principales: Vivekanandhan, Perumal, Swathy, Kannan, Kalaimurugan, Dharman, Ramachandran, Marimuthu, Yuvaraj, Ananthanarayanan, Kumar, Arjunan Naresh, Manikandan, Ayyavu Thendral, Poovarasan, Neelakandan, Shivakumar, Muthugoundar Subramanian, Kweka, Eliningaya J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7197772/
https://www.ncbi.nlm.nih.gov/pubmed/32365106
http://dx.doi.org/10.1371/journal.pone.0232172
Descripción
Sumario:BACKGROUND: The fungal toxin acts as effective, low-cost chemical substances for pest control worldwide and also an alternative to synthetic insecticides. This study assessed the larvicidal potential of Metarhizium anisopliae fungi derived metabolites against Aedes aegypti, Anopheles stephensi, Culex quinquefasciatus and non-targeted organisms at 24hr post treatment. METHOD: Isolation of entomopathogenic fungi M. anisopliae from natural traps confirmed by using 18s rDNA biotechnological tools. Crude extracts from M. anisopliae solvent extraction and their secondary metabolites were bio-assayed following WHO standard procedures against Ae. aegypti, An. stephensi and Cx. quinquefasciatus, Artemia nauplii, Eudrilus eugeniae, and Solanum lycopersicum after 24 hr exposure. Histopathological analysis of E. eugeniae treated with fungi metabolites toxicity compared to those treated with Monocrotophos after 24hrpost-treatment. M. anisopliae metabolites were characterized using GC-MS and FT-IR analysis. RESULTS: The larvicidal activity was recorded in highest concentration of 75μg/ml, with 85%, 97% and 89% mortality in Ae. aegypti, An. stephensi and Cx. quinquefasciatus respectively. M. anisopliae metabolites produced LC(50) values in Ae. aegypti, 59.83μg/ml, in An. stephensi, 50.16μg/ml and in Cx. quinquefasciatus, 51.15μg/ml respectively. M. anisopliae metabolites produced lower toxic effects on A. nauplii, LC(50) values were, 54.96μg/ml respectively. Bio-indicator toxicity results show 18% and 58% mortality was recorded in E. eugeniae and A. nauplii and also there is no phytotoxicity that was observed on S. lycopersicum L. under semi-field condition. E. eugeniae histopathological studies shows fungal metabolites showed lower sub-lethal effects compared to synthetic chemical pesticide at 24hrs of the treatment. The GC-MS and FT-IR analysis identified five major components of active ingredients. CONCLUSION: Findings of this study indicate that, M. anisopliae ethyl acetate derived secondary metabolites are effective against larvae of Ae. aegypti, An. stephensi and Cx. quinquefasciatus mosquito species, lower toxicity effects were observed on non-target organisms such as, Artemia nauplii, Eudrilus eugeniae as well as, no toxicity effect were observed on Solanum lycopersicum. Further research should be conducted in laboratory for separation of single pure molecule and be tested semifield conditions.