Cargando…
Automated image analysis of instagram posts: Implications for risk perception and communication in public health using a case study of #HIV
People’s perceptions about health risks, including their risk of acquiring HIV, are impacted in part by who they see portrayed as at risk in the media. Viewers in these cases are asking themselves “do those portrayed as at risk look like me?” An accurate perception of risk is critical for high-risk...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7197791/ https://www.ncbi.nlm.nih.gov/pubmed/32365124 http://dx.doi.org/10.1371/journal.pone.0231155 |
_version_ | 1783528883172147200 |
---|---|
author | Nobles, Alicia L. Leas, Eric C. Noar, Seth Dredze, Mark Latkin, Carl A. Strathdee, Steffanie A. Ayers, John W. |
author_facet | Nobles, Alicia L. Leas, Eric C. Noar, Seth Dredze, Mark Latkin, Carl A. Strathdee, Steffanie A. Ayers, John W. |
author_sort | Nobles, Alicia L. |
collection | PubMed |
description | People’s perceptions about health risks, including their risk of acquiring HIV, are impacted in part by who they see portrayed as at risk in the media. Viewers in these cases are asking themselves “do those portrayed as at risk look like me?” An accurate perception of risk is critical for high-risk populations, who already suffer from a range of health disparities. Yet, to date no study has evaluated the demographic representation of health-related content from social media. The objective of this case study was to apply automated image recognition software to examine the demographic profile of faces in Instagram posts containing the hashtag #HIV (obtained from January 2017 through July 2018) and compare this to the demographic breakdown of those most at risk of a new HIV diagnosis (estimates of incidence of new HIV diagnoses from the 2017 US Centers for Disease Control HIV Surveillance Report). We discovered 26,766 Instagram posts containing #HIV authored in American English with 10,036 (37.5%) containing a detectable human face with a total of 18,227 faces (mean = 1.8, standard deviation [SD] = 1.7). Faces skewed older (47% vs. 11% were 35–39 years old), more female (41% vs. 19%), more white (43% vs. 26%), less black (31% vs 44%), and less Hispanic (13% vs 25%) on Instagram than for new HIV diagnoses. The results were similarly skewed among the subset of #HIV posts mentioning pre-exposure prophylaxis (PrEP). This disparity might lead Instagram users to potentially misjudge their own HIV risk and delay prophylactic behaviors. Social media managers and organic advocates should be encouraged to share images that better reflect at-risk populations so as not to further marginalize these populations and to reduce disparity in risk perception. Replication of our methods for additional diseases, such as cancer, is warranted to discover and address other misrepresentations. |
format | Online Article Text |
id | pubmed-7197791 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-71977912020-05-12 Automated image analysis of instagram posts: Implications for risk perception and communication in public health using a case study of #HIV Nobles, Alicia L. Leas, Eric C. Noar, Seth Dredze, Mark Latkin, Carl A. Strathdee, Steffanie A. Ayers, John W. PLoS One Research Article People’s perceptions about health risks, including their risk of acquiring HIV, are impacted in part by who they see portrayed as at risk in the media. Viewers in these cases are asking themselves “do those portrayed as at risk look like me?” An accurate perception of risk is critical for high-risk populations, who already suffer from a range of health disparities. Yet, to date no study has evaluated the demographic representation of health-related content from social media. The objective of this case study was to apply automated image recognition software to examine the demographic profile of faces in Instagram posts containing the hashtag #HIV (obtained from January 2017 through July 2018) and compare this to the demographic breakdown of those most at risk of a new HIV diagnosis (estimates of incidence of new HIV diagnoses from the 2017 US Centers for Disease Control HIV Surveillance Report). We discovered 26,766 Instagram posts containing #HIV authored in American English with 10,036 (37.5%) containing a detectable human face with a total of 18,227 faces (mean = 1.8, standard deviation [SD] = 1.7). Faces skewed older (47% vs. 11% were 35–39 years old), more female (41% vs. 19%), more white (43% vs. 26%), less black (31% vs 44%), and less Hispanic (13% vs 25%) on Instagram than for new HIV diagnoses. The results were similarly skewed among the subset of #HIV posts mentioning pre-exposure prophylaxis (PrEP). This disparity might lead Instagram users to potentially misjudge their own HIV risk and delay prophylactic behaviors. Social media managers and organic advocates should be encouraged to share images that better reflect at-risk populations so as not to further marginalize these populations and to reduce disparity in risk perception. Replication of our methods for additional diseases, such as cancer, is warranted to discover and address other misrepresentations. Public Library of Science 2020-05-04 /pmc/articles/PMC7197791/ /pubmed/32365124 http://dx.doi.org/10.1371/journal.pone.0231155 Text en © 2020 Nobles et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Nobles, Alicia L. Leas, Eric C. Noar, Seth Dredze, Mark Latkin, Carl A. Strathdee, Steffanie A. Ayers, John W. Automated image analysis of instagram posts: Implications for risk perception and communication in public health using a case study of #HIV |
title | Automated image analysis of instagram posts: Implications for risk perception and communication in public health using a case study of #HIV |
title_full | Automated image analysis of instagram posts: Implications for risk perception and communication in public health using a case study of #HIV |
title_fullStr | Automated image analysis of instagram posts: Implications for risk perception and communication in public health using a case study of #HIV |
title_full_unstemmed | Automated image analysis of instagram posts: Implications for risk perception and communication in public health using a case study of #HIV |
title_short | Automated image analysis of instagram posts: Implications for risk perception and communication in public health using a case study of #HIV |
title_sort | automated image analysis of instagram posts: implications for risk perception and communication in public health using a case study of #hiv |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7197791/ https://www.ncbi.nlm.nih.gov/pubmed/32365124 http://dx.doi.org/10.1371/journal.pone.0231155 |
work_keys_str_mv | AT noblesalicial automatedimageanalysisofinstagrampostsimplicationsforriskperceptionandcommunicationinpublichealthusingacasestudyofhiv AT leasericc automatedimageanalysisofinstagrampostsimplicationsforriskperceptionandcommunicationinpublichealthusingacasestudyofhiv AT noarseth automatedimageanalysisofinstagrampostsimplicationsforriskperceptionandcommunicationinpublichealthusingacasestudyofhiv AT dredzemark automatedimageanalysisofinstagrampostsimplicationsforriskperceptionandcommunicationinpublichealthusingacasestudyofhiv AT latkincarla automatedimageanalysisofinstagrampostsimplicationsforriskperceptionandcommunicationinpublichealthusingacasestudyofhiv AT strathdeesteffaniea automatedimageanalysisofinstagrampostsimplicationsforriskperceptionandcommunicationinpublichealthusingacasestudyofhiv AT ayersjohnw automatedimageanalysisofinstagrampostsimplicationsforriskperceptionandcommunicationinpublichealthusingacasestudyofhiv |