Cargando…
Does the chromosomal position of 35S rDNA sites influence their transcription? A survey on Nothoscordum species (Amaryllidaceae)
35S ribosomal DNA (rDNA) sites are the regions where the ribosomal genes 18S, 5.8S and 25S, responsible for the formation of the nucleoli, are found. The fact that rDNA sites have non-random distribution on chromosomes suggests that their positions may influence their transcription. To identify if t...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Sociedade Brasileira de Genética
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7197985/ https://www.ncbi.nlm.nih.gov/pubmed/31469154 http://dx.doi.org/10.1590/1678-4685-GMB-2018-0194 |
Sumario: | 35S ribosomal DNA (rDNA) sites are the regions where the ribosomal genes 18S, 5.8S and 25S, responsible for the formation of the nucleoli, are found. The fact that rDNA sites have non-random distribution on chromosomes suggests that their positions may influence their transcription. To identify if the preferentially transcribed rDNA sites occupy specific position, six species (nine cytotypes) of the genus Nothoscordum were analyzed using two different techniques to impregnate the nucleolar organizer regions (NORs) with silver nitrate. Both techniques strongly stained NORs, but one of them also stained the proximal region of all chromosomes, suggesting the existence of another group of argentophilic proteins in this region. In species with rDNA sites in acrocentric and metacentric chromosomes, sites located on the short arms of the acrocentric chromosomes were preferentially activated. On the other hand, in species with rDNA sites restricted to the short arms of the acrocentrics, all of them were activated, whereas in those species with sites restricted to the terminal region of metacentric chromosomes, the frequency of active sites was always lower than expected. This indicate that, at least in Nothoscordum, the transcription of an rDNA site is influenced by its chromosomal position, and may explain, at least partially, the strongly non-random distribution of these sites in plant and animal chromosomes. |
---|