Cargando…
The microbiome driving anaerobic digestion and microbial analysis
The microbiome residing in anaerobic digesters drives the anaerobic digestion (AD) process to convert various feedstocks to biogas as a renewable source of energy. This microbiome has been investigated in numerous studies in the last century. The early studies used cultivation-based methods and anal...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7198183/ http://dx.doi.org/10.1016/bs.aibe.2020.04.001 |
Sumario: | The microbiome residing in anaerobic digesters drives the anaerobic digestion (AD) process to convert various feedstocks to biogas as a renewable source of energy. This microbiome has been investigated in numerous studies in the last century. The early studies used cultivation-based methods and analysis to identify the four guilds (or functional groups) of microorganisms. Molecular biology techniques overcame the limitations of cultivation-based methods and allowed the identification of unculturable microorganisms, revealing the high diversity of microorganisms involved in AD. In the past decade, omics technologies, including metataxonomics, metagenomics, metatranscriptomics, metaproteomics, and metametabolomics, have been or start to be used in comprehensive analysis and studies of biogas-producing microbiomes. In this chapter, we reviewed the utilities and limitations of these analysis methods, techniques, and technologies when they were used in studies of biogas-producing microbiomes, as well as the new information on diversity, composition, metabolism, and syntrophic interactions of biogas-producing microbiomes. We also discussed the current knowledge gaps and the research needed to further improve AD efficiency and stability. |
---|