Cargando…

A promising and cost-effective biochar adsorbent derived from jujube pit for the removal of Pb(II) from aqueous solution

This study evaluated the Pb(II) sorption capacity of jujube pit biochar (JPB) in aqueous solution, which was derived from jujube pit by pyrolysis and used as a promising and economical adsorbent. More importantly, the utilization of JPB could realize the recycling of agricultural residues. The JPB w...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Junkai, Liu, Yu, Li, Xuebin, Yang, Mouyuan, Wang, Jinbao, Chen, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7198518/
https://www.ncbi.nlm.nih.gov/pubmed/32366969
http://dx.doi.org/10.1038/s41598-020-64191-1
Descripción
Sumario:This study evaluated the Pb(II) sorption capacity of jujube pit biochar (JPB) in aqueous solution, which was derived from jujube pit by pyrolysis and used as a promising and economical adsorbent. More importantly, the utilization of JPB could realize the recycling of agricultural residues. The JPB was characterized using conventional science technologies, including SEM, BET and FT-IR, and the sorption capacity of JPB for lead ions was investigated according to different adsorption parameters, such as the kinetics data, solution pH, isotherms data, coexisting ions of Na(+) and K(+), desorption and reusability, and solution temperature. The results of kinetics data suggested that the lead ion adsorption process by JPB could be fast to reach equilibrium within 30 min. Additionally, the adsorption capacity of JPB for Pb(II) was calculated to be maximum for 137.1 mg/g at pH 6.0. More importantly, after five cycles of desorption and reuse, the JPB still reached 70% of its original adsorption capacity. All the results suggested that JPB had a broad application prospect for the purification of lead ions in practical.