Cargando…
Diagnosis of Autism Spectrum Disorder Using Central-Moment Features From Low- and High-Order Dynamic Resting-State Functional Connectivity Networks
The sliding-window-based dynamic functional connectivity networks (D-FCNs) derived from resting-state functional magnetic resonance imaging (rs-fMRI) are effective methods for diagnosing various neurological diseases, including autism spectrum disorder (ASD). However, traditional D-FCNs are low-orde...
Autores principales: | Zhao, Feng, Chen, Zhiyuan, Rekik, Islem, Lee, Seong-Whan, Shen, Dinggang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7198826/ https://www.ncbi.nlm.nih.gov/pubmed/32410930 http://dx.doi.org/10.3389/fnins.2020.00258 |
Ejemplares similares
-
Constructing high-order functional connectivity network based on central moment features for diagnosis of autism spectrum disorder
por: Xie, Qingsong, et al.
Publicado: (2021) -
Diagnosis of Autism Spectrum Disorders Using Multi-Level High-Order Functional Networks Derived From Resting-State Functional MRI
por: Zhao, Feng, et al.
Publicado: (2018) -
A Novel Unit-Based Personalized Fingerprint Feature Selection Strategy for Dynamic Functional Connectivity Networks
por: Zhao, Feng, et al.
Publicado: (2021) -
Hybrid High-order Functional Connectivity Networks Using Resting-state Functional MRI for Mild Cognitive Impairment Diagnosis
por: Zhang, Yu, et al.
Publicado: (2017) -
Unsupervised Manifold Learning Using High-Order Morphological Brain Networks Derived From T1-w MRI for Autism Diagnosis
por: Soussia, Mayssa, et al.
Publicado: (2018)