Cargando…

Synthesis, crystal structure, DFT calculations and Hirshfeld surface analysis of 3-butyl-2,6-bis­(4-fluoro­phen­yl)piperidin-4-one

The title compound, C(21)H(23)F(2)NO, consists of two fluoro­phenyl groups and one butyl group equatorially oriented on a piperidine ring, which adopts a chair conformation. The dihedral angle between the mean planes of the phenyl rings is 72.1 (1)°. In the crystal, N—H⋯O and weak C—H⋯F inter­action...

Descripción completa

Detalles Bibliográficos
Autores principales: Anitha, K., Sivakumar, S., Arulraj, R., Rajkumar, K., Kaur, Manpreet, Jasinski, Jerry P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7199252/
https://www.ncbi.nlm.nih.gov/pubmed/32431926
http://dx.doi.org/10.1107/S2056989020004636
Descripción
Sumario:The title compound, C(21)H(23)F(2)NO, consists of two fluoro­phenyl groups and one butyl group equatorially oriented on a piperidine ring, which adopts a chair conformation. The dihedral angle between the mean planes of the phenyl rings is 72.1 (1)°. In the crystal, N—H⋯O and weak C—H⋯F inter­actions, which form R (2) (2)[14] motifs, link the mol­ecules into infinite C(6) chains propagating along [001]. A weak C—H⋯π inter­action is also observed. A Hirshfeld surface analysis of the crystal structure indicates that the most significant contributions to the crystal packing are from H⋯H (53.3%), H⋯C/C⋯H (19.1%), H⋯F/F⋯H (15.7%) and H⋯O/O⋯H (7.7%) contacts. Density functional theory geometry-optimized calculations were compared to the experimentally determined structure in the solid state and used to determine the HOMO–LUMO energy gap and compare it to the UV–vis experimental spectrum.