Cargando…
Using machine learning techniques to develop risk prediction models to predict graft failure following kidney transplantation: protocol for a retrospective cohort study
Background: A mechanism to predict graft failure before the actual kidney transplantation occurs is crucial to clinical management of chronic kidney disease patients. Several kidney graft outcome prediction models, developed using machine learning methods, are available in the literature. However,...
Autores principales: | Senanayake, Sameera, Barnett, Adrian, Graves, Nicholas, Healy, Helen, Baboolal, Keshwar, Kularatna, Sanjeewa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7199287/ https://www.ncbi.nlm.nih.gov/pubmed/32419922 http://dx.doi.org/10.12688/f1000research.20661.2 |
Ejemplares similares
-
Development and validation of a risk index to predict kidney graft survival: the kidney transplant risk index
por: Senanayake, Sameera, et al.
Publicado: (2021) -
Time-to-event analysis in economic evaluations: a comparison of modelling methods to assess the cost-effectiveness of transplanting a marginal quality kidney
por: Senanayake, Sameera, et al.
Publicado: (2021) -
Cost-utility analysis in chronic kidney disease patients undergoing kidney transplant; what pays? A systematic review
por: Senanayake, Sameera, et al.
Publicado: (2020) -
Deceased donor kidney allocation: an economic evaluation of contemporary longevity matching practices
por: Senanayake, Sameera, et al.
Publicado: (2020) -
Cost-Effectiveness and Budget Impact Analysis of Implementing a 'Soft Opt-Out' System for Kidney Donation in Australia
por: Senanayake, Sameera, et al.
Publicado: (2022)