Cargando…

Detecting PCOS susceptibility loci from genome-wide association studies via iterative trend correlation based feature screening

BACKGROUND: Feature screening plays a critical role in handling ultrahigh dimensional data analyses when the number of features exponentially exceeds the number of observations. It is increasingly common in biomedical research to have case-control (binary) response and an extremely large-scale categ...

Descripción completa

Detalles Bibliográficos
Autores principales: Dai, Xiaotian, Fu, Guifang, Reese, Randall
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7199379/
https://www.ncbi.nlm.nih.gov/pubmed/32366216
http://dx.doi.org/10.1186/s12859-020-3492-z
Descripción
Sumario:BACKGROUND: Feature screening plays a critical role in handling ultrahigh dimensional data analyses when the number of features exponentially exceeds the number of observations. It is increasingly common in biomedical research to have case-control (binary) response and an extremely large-scale categorical features. However, the approach considering such data types is limited in extant literature. In this article, we propose a new feature screening approach based on the iterative trend correlation (ITC-SIS, for short) to detect important susceptibility loci that are associated with the polycystic ovary syndrome (PCOS) affection status by screening 731,442 SNP features that were collected from the genome-wide association studies. RESULTS: We prove that the trend correlation based screening approach satisfies the theoretical strong screening consistency property under a set of reasonable conditions, which provides an appealing theoretical support for its outperformance. We demonstrate that the finite sample performance of ITC-SIS is accurate and fast through various simulation designs. CONCLUSION: ITC-SIS serves as a good alternative method to detect disease susceptibility loci for clinic genomic data.