Cargando…
3D-BoxSup: Positive-Unlabeled Learning of Brain Tumor Segmentation Networks From 3D Bounding Boxes
Accurate segmentation is an essential task when working with medical images. Recently, deep convolutional neural networks achieved a state-of-the-art performance for many segmentation benchmarks. Regardless of the network architecture, the deep learning-based segmentation methods view the segmentati...
Autores principales: | Xu, Yanwu, Gong, Mingming, Chen, Junxiang, Chen, Ziye, Batmanghelich, Kayhan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7199456/ https://www.ncbi.nlm.nih.gov/pubmed/32410939 http://dx.doi.org/10.3389/fnins.2020.00350 |
Ejemplares similares
-
Hierarchical Amortized GAN for 3D High Resolution Medical Image Synthesis
por: Sun, Li, et al.
Publicado: (2022) -
Point Cloud Instance Segmentation with Inaccurate Bounding-Box Annotations
por: Peng, Yinyin, et al.
Publicado: (2023) -
3D-Printable Mystery Boxes
por: S'Cool LAB, Team
Publicado: (2022) -
Estimation of 6D Object Pose Using a 2D Bounding Box
por: Hong, Yong, et al.
Publicado: (2021) -
Perception of 3D Slant Out of the Box
por: van der Kooij, Katinka, et al.
Publicado: (2011)