Cargando…
Anomaly Detection in EEG Signals: A Case Study on Similarity Measure
Motivation. Anomaly EEG detection is a long-standing problem in analysis of EEG signals. The basic premise of this problem is consideration of the similarity between two nonstationary EEG recordings. A well-established scheme is based on sequence matching, typically including three steps: feature ex...
Autores principales: | Chen, Guangyuan, Lu, Guoliang, Xie, Zhaohong, Shang, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7199628/ https://www.ncbi.nlm.nih.gov/pubmed/32405297 http://dx.doi.org/10.1155/2020/6925107 |
Ejemplares similares
-
Automatic Change Detection for Real-Time Monitoring of EEG Signals
por: Gao, Zhen, et al.
Publicado: (2018) -
Detecting Phase-Synchrony Connectivity Anomalies in EEG Signals. Application to Dyslexia Diagnosis
por: Formoso, Marco A., et al.
Publicado: (2021) -
Similarity matrix-based anomaly detection for clinical intervention
por: D’Mello, Ryan, et al.
Publicado: (2022) -
Anomaly Detection in Nanofibrous Materials by CNN-Based Self-Similarity
por: Napoletano, Paolo, et al.
Publicado: (2018) -
Unsupervised Video Anomaly Detection Based on Similarity with Predefined Text Descriptions
por: Kim, Jaehyun, et al.
Publicado: (2023)