Cargando…
An automated tissue-to-diagnosis pipeline using intraoperative stimulated Raman histology and deep learning
We recently developed and validated a bedside tissue-to-diagnosis pipeline using stimulated Raman histology (SRH), a label-free optical imaging method, and deep convolutional neural networks (CNN) in prospective clinical trial. Our CNN learned a hierarchy of interpretable histologic features found i...
Autores principales: | Hollon, Todd C., Orringer, Daniel A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7199763/ https://www.ncbi.nlm.nih.gov/pubmed/32391430 http://dx.doi.org/10.1080/23723556.2020.1736742 |
Ejemplares similares
-
Automated histologic diagnosis of CNS tumors with machine learning
por: Khalsa, Siri Sahib S, et al.
Publicado: (2020) -
Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks
por: Hollon, Todd C., et al.
Publicado: (2020) -
Mutations in glioblastoma oncosuppressive pathways pave the way for oncomodulatory activity of cytomegalovirus
por: Hollon, Todd C, et al.
Publicado: (2013) -
Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy
por: Orringer, Daniel A., et al.
Publicado: (2017) -
Author Correction: A pyramidal deep learning pipeline for kidney whole-slide histology images classification
por: Abdeltawab, Hisham, et al.
Publicado: (2021)