Cargando…
CdSe/CdS/CdTe Core/Barrier/Crown Nanoplatelets: Synthesis, Optoelectronic Properties, and Multiphoton Fluorescence Upconversion
[Image: see text] Colloidal two-dimensional (2D) nanoplatelet heterostructures are particularly interesting as they combine strong confinement of excitons in 2D materials with a wide range of possible semiconductor junctions due to a template-free, solution-based growth. Here, we present the synthes...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7199781/ https://www.ncbi.nlm.nih.gov/pubmed/32275814 http://dx.doi.org/10.1021/acsnano.9b09147 |
_version_ | 1783529211931131904 |
---|---|
author | Khan, Ali Hossain Bertrand, Guillaume H. V. Teitelboim, Ayelet Sekhar M., Chandra Polovitsyn, Anatolii Brescia, Rosaria Planelles, Josep Climente, Juan Ignacio Oron, Dan Moreels, Iwan |
author_facet | Khan, Ali Hossain Bertrand, Guillaume H. V. Teitelboim, Ayelet Sekhar M., Chandra Polovitsyn, Anatolii Brescia, Rosaria Planelles, Josep Climente, Juan Ignacio Oron, Dan Moreels, Iwan |
author_sort | Khan, Ali Hossain |
collection | PubMed |
description | [Image: see text] Colloidal two-dimensional (2D) nanoplatelet heterostructures are particularly interesting as they combine strong confinement of excitons in 2D materials with a wide range of possible semiconductor junctions due to a template-free, solution-based growth. Here, we present the synthesis of a ternary 2D architecture consisting of a core of CdSe, laterally encapsulated by a type-I barrier of CdS, and finally a type-II outer layer of CdTe as so-called crown. The CdS acts as a tunneling barrier between CdSe- and CdTe-localized hole states, and through strain at the CdS/CdTe interface, it can induce a shallow electron barrier for CdTe-localized electrons as well. Consequently, next to an extended fluorescence lifetime, the barrier also yields emission from CdSe and CdTe direct transitions. The core/barrier/crown configuration further enables two-photon fluorescence upconversion and, due to a high nonlinear absorption cross section, even allows to upconvert three near-infrared photons into a single green photon. These results demonstrate the capability of 2D heterostructured nanoplatelets to combine weak and strong confinement regimes to engineer their optoelectronic properties. |
format | Online Article Text |
id | pubmed-7199781 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-71997812021-04-10 CdSe/CdS/CdTe Core/Barrier/Crown Nanoplatelets: Synthesis, Optoelectronic Properties, and Multiphoton Fluorescence Upconversion Khan, Ali Hossain Bertrand, Guillaume H. V. Teitelboim, Ayelet Sekhar M., Chandra Polovitsyn, Anatolii Brescia, Rosaria Planelles, Josep Climente, Juan Ignacio Oron, Dan Moreels, Iwan ACS Nano [Image: see text] Colloidal two-dimensional (2D) nanoplatelet heterostructures are particularly interesting as they combine strong confinement of excitons in 2D materials with a wide range of possible semiconductor junctions due to a template-free, solution-based growth. Here, we present the synthesis of a ternary 2D architecture consisting of a core of CdSe, laterally encapsulated by a type-I barrier of CdS, and finally a type-II outer layer of CdTe as so-called crown. The CdS acts as a tunneling barrier between CdSe- and CdTe-localized hole states, and through strain at the CdS/CdTe interface, it can induce a shallow electron barrier for CdTe-localized electrons as well. Consequently, next to an extended fluorescence lifetime, the barrier also yields emission from CdSe and CdTe direct transitions. The core/barrier/crown configuration further enables two-photon fluorescence upconversion and, due to a high nonlinear absorption cross section, even allows to upconvert three near-infrared photons into a single green photon. These results demonstrate the capability of 2D heterostructured nanoplatelets to combine weak and strong confinement regimes to engineer their optoelectronic properties. American Chemical Society 2020-04-10 2020-04-28 /pmc/articles/PMC7199781/ /pubmed/32275814 http://dx.doi.org/10.1021/acsnano.9b09147 Text en Copyright © 2020 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Khan, Ali Hossain Bertrand, Guillaume H. V. Teitelboim, Ayelet Sekhar M., Chandra Polovitsyn, Anatolii Brescia, Rosaria Planelles, Josep Climente, Juan Ignacio Oron, Dan Moreels, Iwan CdSe/CdS/CdTe Core/Barrier/Crown Nanoplatelets: Synthesis, Optoelectronic Properties, and Multiphoton Fluorescence Upconversion |
title | CdSe/CdS/CdTe
Core/Barrier/Crown Nanoplatelets: Synthesis, Optoelectronic Properties,
and Multiphoton Fluorescence Upconversion |
title_full | CdSe/CdS/CdTe
Core/Barrier/Crown Nanoplatelets: Synthesis, Optoelectronic Properties,
and Multiphoton Fluorescence Upconversion |
title_fullStr | CdSe/CdS/CdTe
Core/Barrier/Crown Nanoplatelets: Synthesis, Optoelectronic Properties,
and Multiphoton Fluorescence Upconversion |
title_full_unstemmed | CdSe/CdS/CdTe
Core/Barrier/Crown Nanoplatelets: Synthesis, Optoelectronic Properties,
and Multiphoton Fluorescence Upconversion |
title_short | CdSe/CdS/CdTe
Core/Barrier/Crown Nanoplatelets: Synthesis, Optoelectronic Properties,
and Multiphoton Fluorescence Upconversion |
title_sort | cdse/cds/cdte
core/barrier/crown nanoplatelets: synthesis, optoelectronic properties,
and multiphoton fluorescence upconversion |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7199781/ https://www.ncbi.nlm.nih.gov/pubmed/32275814 http://dx.doi.org/10.1021/acsnano.9b09147 |
work_keys_str_mv | AT khanalihossain cdsecdscdtecorebarriercrownnanoplateletssynthesisoptoelectronicpropertiesandmultiphotonfluorescenceupconversion AT bertrandguillaumehv cdsecdscdtecorebarriercrownnanoplateletssynthesisoptoelectronicpropertiesandmultiphotonfluorescenceupconversion AT teitelboimayelet cdsecdscdtecorebarriercrownnanoplateletssynthesisoptoelectronicpropertiesandmultiphotonfluorescenceupconversion AT sekharmchandra cdsecdscdtecorebarriercrownnanoplateletssynthesisoptoelectronicpropertiesandmultiphotonfluorescenceupconversion AT polovitsynanatolii cdsecdscdtecorebarriercrownnanoplateletssynthesisoptoelectronicpropertiesandmultiphotonfluorescenceupconversion AT bresciarosaria cdsecdscdtecorebarriercrownnanoplateletssynthesisoptoelectronicpropertiesandmultiphotonfluorescenceupconversion AT planellesjosep cdsecdscdtecorebarriercrownnanoplateletssynthesisoptoelectronicpropertiesandmultiphotonfluorescenceupconversion AT climentejuanignacio cdsecdscdtecorebarriercrownnanoplateletssynthesisoptoelectronicpropertiesandmultiphotonfluorescenceupconversion AT orondan cdsecdscdtecorebarriercrownnanoplateletssynthesisoptoelectronicpropertiesandmultiphotonfluorescenceupconversion AT moreelsiwan cdsecdscdtecorebarriercrownnanoplateletssynthesisoptoelectronicpropertiesandmultiphotonfluorescenceupconversion |