Cargando…

CdSe/CdS/CdTe Core/Barrier/Crown Nanoplatelets: Synthesis, Optoelectronic Properties, and Multiphoton Fluorescence Upconversion

[Image: see text] Colloidal two-dimensional (2D) nanoplatelet heterostructures are particularly interesting as they combine strong confinement of excitons in 2D materials with a wide range of possible semiconductor junctions due to a template-free, solution-based growth. Here, we present the synthes...

Descripción completa

Detalles Bibliográficos
Autores principales: Khan, Ali Hossain, Bertrand, Guillaume H. V., Teitelboim, Ayelet, Sekhar M., Chandra, Polovitsyn, Anatolii, Brescia, Rosaria, Planelles, Josep, Climente, Juan Ignacio, Oron, Dan, Moreels, Iwan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7199781/
https://www.ncbi.nlm.nih.gov/pubmed/32275814
http://dx.doi.org/10.1021/acsnano.9b09147
_version_ 1783529211931131904
author Khan, Ali Hossain
Bertrand, Guillaume H. V.
Teitelboim, Ayelet
Sekhar M., Chandra
Polovitsyn, Anatolii
Brescia, Rosaria
Planelles, Josep
Climente, Juan Ignacio
Oron, Dan
Moreels, Iwan
author_facet Khan, Ali Hossain
Bertrand, Guillaume H. V.
Teitelboim, Ayelet
Sekhar M., Chandra
Polovitsyn, Anatolii
Brescia, Rosaria
Planelles, Josep
Climente, Juan Ignacio
Oron, Dan
Moreels, Iwan
author_sort Khan, Ali Hossain
collection PubMed
description [Image: see text] Colloidal two-dimensional (2D) nanoplatelet heterostructures are particularly interesting as they combine strong confinement of excitons in 2D materials with a wide range of possible semiconductor junctions due to a template-free, solution-based growth. Here, we present the synthesis of a ternary 2D architecture consisting of a core of CdSe, laterally encapsulated by a type-I barrier of CdS, and finally a type-II outer layer of CdTe as so-called crown. The CdS acts as a tunneling barrier between CdSe- and CdTe-localized hole states, and through strain at the CdS/CdTe interface, it can induce a shallow electron barrier for CdTe-localized electrons as well. Consequently, next to an extended fluorescence lifetime, the barrier also yields emission from CdSe and CdTe direct transitions. The core/barrier/crown configuration further enables two-photon fluorescence upconversion and, due to a high nonlinear absorption cross section, even allows to upconvert three near-infrared photons into a single green photon. These results demonstrate the capability of 2D heterostructured nanoplatelets to combine weak and strong confinement regimes to engineer their optoelectronic properties.
format Online
Article
Text
id pubmed-7199781
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-71997812021-04-10 CdSe/CdS/CdTe Core/Barrier/Crown Nanoplatelets: Synthesis, Optoelectronic Properties, and Multiphoton Fluorescence Upconversion Khan, Ali Hossain Bertrand, Guillaume H. V. Teitelboim, Ayelet Sekhar M., Chandra Polovitsyn, Anatolii Brescia, Rosaria Planelles, Josep Climente, Juan Ignacio Oron, Dan Moreels, Iwan ACS Nano [Image: see text] Colloidal two-dimensional (2D) nanoplatelet heterostructures are particularly interesting as they combine strong confinement of excitons in 2D materials with a wide range of possible semiconductor junctions due to a template-free, solution-based growth. Here, we present the synthesis of a ternary 2D architecture consisting of a core of CdSe, laterally encapsulated by a type-I barrier of CdS, and finally a type-II outer layer of CdTe as so-called crown. The CdS acts as a tunneling barrier between CdSe- and CdTe-localized hole states, and through strain at the CdS/CdTe interface, it can induce a shallow electron barrier for CdTe-localized electrons as well. Consequently, next to an extended fluorescence lifetime, the barrier also yields emission from CdSe and CdTe direct transitions. The core/barrier/crown configuration further enables two-photon fluorescence upconversion and, due to a high nonlinear absorption cross section, even allows to upconvert three near-infrared photons into a single green photon. These results demonstrate the capability of 2D heterostructured nanoplatelets to combine weak and strong confinement regimes to engineer their optoelectronic properties. American Chemical Society 2020-04-10 2020-04-28 /pmc/articles/PMC7199781/ /pubmed/32275814 http://dx.doi.org/10.1021/acsnano.9b09147 Text en Copyright © 2020 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Khan, Ali Hossain
Bertrand, Guillaume H. V.
Teitelboim, Ayelet
Sekhar M., Chandra
Polovitsyn, Anatolii
Brescia, Rosaria
Planelles, Josep
Climente, Juan Ignacio
Oron, Dan
Moreels, Iwan
CdSe/CdS/CdTe Core/Barrier/Crown Nanoplatelets: Synthesis, Optoelectronic Properties, and Multiphoton Fluorescence Upconversion
title CdSe/CdS/CdTe Core/Barrier/Crown Nanoplatelets: Synthesis, Optoelectronic Properties, and Multiphoton Fluorescence Upconversion
title_full CdSe/CdS/CdTe Core/Barrier/Crown Nanoplatelets: Synthesis, Optoelectronic Properties, and Multiphoton Fluorescence Upconversion
title_fullStr CdSe/CdS/CdTe Core/Barrier/Crown Nanoplatelets: Synthesis, Optoelectronic Properties, and Multiphoton Fluorescence Upconversion
title_full_unstemmed CdSe/CdS/CdTe Core/Barrier/Crown Nanoplatelets: Synthesis, Optoelectronic Properties, and Multiphoton Fluorescence Upconversion
title_short CdSe/CdS/CdTe Core/Barrier/Crown Nanoplatelets: Synthesis, Optoelectronic Properties, and Multiphoton Fluorescence Upconversion
title_sort cdse/cds/cdte core/barrier/crown nanoplatelets: synthesis, optoelectronic properties, and multiphoton fluorescence upconversion
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7199781/
https://www.ncbi.nlm.nih.gov/pubmed/32275814
http://dx.doi.org/10.1021/acsnano.9b09147
work_keys_str_mv AT khanalihossain cdsecdscdtecorebarriercrownnanoplateletssynthesisoptoelectronicpropertiesandmultiphotonfluorescenceupconversion
AT bertrandguillaumehv cdsecdscdtecorebarriercrownnanoplateletssynthesisoptoelectronicpropertiesandmultiphotonfluorescenceupconversion
AT teitelboimayelet cdsecdscdtecorebarriercrownnanoplateletssynthesisoptoelectronicpropertiesandmultiphotonfluorescenceupconversion
AT sekharmchandra cdsecdscdtecorebarriercrownnanoplateletssynthesisoptoelectronicpropertiesandmultiphotonfluorescenceupconversion
AT polovitsynanatolii cdsecdscdtecorebarriercrownnanoplateletssynthesisoptoelectronicpropertiesandmultiphotonfluorescenceupconversion
AT bresciarosaria cdsecdscdtecorebarriercrownnanoplateletssynthesisoptoelectronicpropertiesandmultiphotonfluorescenceupconversion
AT planellesjosep cdsecdscdtecorebarriercrownnanoplateletssynthesisoptoelectronicpropertiesandmultiphotonfluorescenceupconversion
AT climentejuanignacio cdsecdscdtecorebarriercrownnanoplateletssynthesisoptoelectronicpropertiesandmultiphotonfluorescenceupconversion
AT orondan cdsecdscdtecorebarriercrownnanoplateletssynthesisoptoelectronicpropertiesandmultiphotonfluorescenceupconversion
AT moreelsiwan cdsecdscdtecorebarriercrownnanoplateletssynthesisoptoelectronicpropertiesandmultiphotonfluorescenceupconversion