Cargando…

Radial contractility of actomyosin rings facilitates axonal trafficking and structural stability

Most mammalian neurons have a narrow axon, which constrains the passage of large cargoes such as autophagosomes that can be larger than the axon diameter. Radial axonal expansion must therefore occur to ensure efficient axonal trafficking. In this study, we reveal that the speed of various large car...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Tong, Li, Wei, Martin, Sally, Papadopulos, Andreas, Joensuu, Merja, Liu, Chunxia, Jiang, Anmin, Shamsollahi, Golnoosh, Amor, Rumelo, Lanoue, Vanessa, Padmanabhan, Pranesh, Meunier, Frédéric A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Rockefeller University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7199852/
https://www.ncbi.nlm.nih.gov/pubmed/32182623
http://dx.doi.org/10.1083/jcb.201902001
Descripción
Sumario:Most mammalian neurons have a narrow axon, which constrains the passage of large cargoes such as autophagosomes that can be larger than the axon diameter. Radial axonal expansion must therefore occur to ensure efficient axonal trafficking. In this study, we reveal that the speed of various large cargoes undergoing axonal transport is significantly slower than that of small ones and that the transit of diverse-sized cargoes causes an acute, albeit transient, axonal radial expansion, which is immediately restored by constitutive axonal contractility. Using live super-resolution microscopy, we demonstrate that actomyosin-II controls axonal radial contractility and local expansion, and that NM-II filaments associate with periodic F-actin rings via their head domains. Pharmacological inhibition of NM-II activity significantly increases axon diameter by detaching the NM-II from F-actin and impacts the trafficking speed, directionality, and overall efficiency of long-range retrograde trafficking. Consequently, prolonged NM-II inactivation leads to disruption of periodic actin rings and formation of focal axonal swellings, a hallmark of axonal degeneration.