Cargando…

Lanthanum and abscisic acid coregulate chlorophyll production of seedling in switchgrass

The rare earth element lanthanum (La) has been proven to be beneficial for plant growth with a low concentration, and abscisic acid (ABA) which is a plant hormone also can regulate plant growth. In the present study, we investigated the germination and seedling growth of switchgrass (Panicum virgatu...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Xueqing, You, Pei, Sun, Yunfu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7199945/
https://www.ncbi.nlm.nih.gov/pubmed/32369520
http://dx.doi.org/10.1371/journal.pone.0232750
Descripción
Sumario:The rare earth element lanthanum (La) has been proven to be beneficial for plant growth with a low concentration, and abscisic acid (ABA) which is a plant hormone also can regulate plant growth. In the present study, we investigated the germination and seedling growth of switchgrass (Panicum virgatum L.) under La (10 μM), ABA (10 μM) and La + ABA treatments. The results showed that La, ABA and La + ABA treatments could not significantly affect the germination and shoot length as compared to the control (P>0.05). However, La treatment increased the root activity and chlorophyll content, and ABA treatment enhanced root length and root activity (P<0.05). La + ABA treatments demonstrated that La could not significantly alleviate the promotion of ABA in root length, while ABA reversed the increase of chlorophyll content caused by La. The coregulation of La and ABA on chlorophyll content was further explored by in vitro experiments and quantum chemical calculations. In vitro experiments revealed that La, ABA, and La + ABA treatments reduced the absorbance of chlorophyll, and quantum chemical calculations indicated that the reduction of absorbance was caused by the reactions between La, ABA and chlorophyll. In vivo and in vitro experiments, together with quantum chemical calculations, demonstrated that both ABA and La could stimulate the production of chlorophyll, while they also could react with chlorophyll to produce La-monochlorophyll, La-bischlorophyll, and ABA adsorbed chlorophyll, which had lower absorbance. La + ABA treatment significantly decreased the chlorophyll content in vivo. This phenomenon was due to the fact that La and ABA formed LaABA compound, which markedly reduced the concentrations of ABA and La, and the effect of promoting chlorophyll production was overcome by the effect of reducing chlorophyll absorbance.