Cargando…
Machine learning goes wild: Using data from captive individuals to infer wildlife behaviours
1. Remotely tracking distinct behaviours of animals using acceleration data and machine learning has been carried out successfully in several species in captive settings. In order to study the ecology of animals in natural habitats, such behaviour classification models need to be transferred to wild...
Autores principales: | Rast, Wanja, Kimmig, Sophia Elisabeth, Giese, Lisa, Berger, Anne |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7200095/ https://www.ncbi.nlm.nih.gov/pubmed/32369485 http://dx.doi.org/10.1371/journal.pone.0227317 |
Ejemplares similares
-
Using Machine Learning for Remote Behaviour Classification—Verifying Acceleration Data to Infer Feeding Events in Free-Ranging Cheetahs
por: Giese, Lisa, et al.
Publicado: (2021) -
Music Festival Makes Hedgehogs Move: How Individuals Cope Behaviorally in Response to Human-Induced Stressors
por: Rast, Wanja, et al.
Publicado: (2019) -
Urban Hedgehog Behavioural Responses to Temporary Habitat Disturbance versus Permanent Fragmentation
por: Berger, Anne, et al.
Publicado: (2020) -
Editorial: Health and Disease in Free-Ranging and Captive Wildlife
por: Ossiboff, Robert J., et al.
Publicado: (2020) -
Captive wildlife management survey in Vietnam, 2015–2021
por: Van Thu, Nhu, et al.
Publicado: (2023)