Cargando…
GPER1 Signaling Initiates Migration of Female V-SVZ-Derived Cells
In the rodent ventricular-subventricular zone (V-SVZ) neurons are generated throughout life. They migrate along the rostral migratory stream (RMS) into the olfactory bulb before their final differentiation into interneurons and integration into local circuits. Estrogen receptors (ERs) are steroid ho...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7200306/ https://www.ncbi.nlm.nih.gov/pubmed/32361597 http://dx.doi.org/10.1016/j.isci.2020.101077 |
Sumario: | In the rodent ventricular-subventricular zone (V-SVZ) neurons are generated throughout life. They migrate along the rostral migratory stream (RMS) into the olfactory bulb before their final differentiation into interneurons and integration into local circuits. Estrogen receptors (ERs) are steroid hormone receptors with important functions in neurogenesis and synaptic plasticity. In this study, we show that the ER GPER1 is expressed in subsets of cells within the V-SVZ of female animals and provide evidence for a potential local estrogen source from aromatase-positive astrocytes surrounding the RMS. Blocking of GPER1 in Matrigel cultures of female animals significantly impairs migration of V-SVZ-derived cells. This outgrowth is accompanied by regulation of phosphorylation of the actin-binding protein cofilin by GPER1 signaling including an involvement of the p21-Ras pathway. Our results point to a prominent role of GPER1 in the initiation of neuronal migration from the V-SVZ to the olfactory bulb. |
---|