Cargando…
Estimating the COVID-19 infection rate: Anatomy of an inference problem
As a consequence of missing data on tests for infection and imperfect accuracy of tests, reported rates of cumulative population infection by the SARS CoV-2 virus are lower than actual rates of infection. Hence, reported rates of severe illness conditional on infection are higher than actual rates....
Autores principales: | Manski, Charles F., Molinari, Francesca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7200382/ https://www.ncbi.nlm.nih.gov/pubmed/32377030 http://dx.doi.org/10.1016/j.jeconom.2020.04.041 |
Ejemplares similares
-
Forming COVID-19 Policy Under Uncertainty
por: Manski, Charles F.
Publicado: (2020) -
Editorial: Bayesian Estimation and Inference in Computational Anatomy and Neuroimaging: Methods and Applications
por: Tang, Xiaoying, et al.
Publicado: (2019) -
Active inference and the anatomy of oculomotion
por: Parr, Thomas, et al.
Publicado: (2018) -
Inferring True COVID19 Infection Rates From Deaths
por: McCulloh, Ian, et al.
Publicado: (2020) -
Infection fatality rate of COVID-19 inferred from seroprevalence data
por: Ioannidis, John P A
Publicado: (2021)