Cargando…

Effects of increasing dietary level of a commercial liquid supplement on growth performance and carcass characteristics in feedlot steers

Feeding cattle liquid supplements has become increasingly popular in the feedlot industry; however, optimal inclusion of liquid supplements in feedlot cattle diets is not known. The objectives of this study were to determine the optimal inclusion of liquid supplementation to maximize growth performa...

Descripción completa

Detalles Bibliográficos
Autores principales: Felix, Tara L, Long, Chloe J, Stierwalt, Madeline R, Carvalho, Pedro H V, Blalock, Howard M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7200482/
https://www.ncbi.nlm.nih.gov/pubmed/32704705
http://dx.doi.org/10.1093/tas/txy009
Descripción
Sumario:Feeding cattle liquid supplements has become increasingly popular in the feedlot industry; however, optimal inclusion of liquid supplements in feedlot cattle diets is not known. The objectives of this study were to determine the optimal inclusion of liquid supplementation to maximize growth performance and improve carcass characteristics, as well as estimate the energy value of liquid supplementation when used as a direct corn replacement, for feedlot steers fed a concentrate-based diet. Two hundred and eighty steer calves were stratified by BW into light (BW = 208 ± 9 kg; n = 24) and heavy (BW = 275 ± 8 kg; n = 16) pens. Pens within BW block were randomly assigned to 1 of 4 supplements: 1) dry at 4.5% inclusion (0LIQ), 2) liquid (a proprietary blend from Quality Liquid Feeds; Dodgeville, WI) at 4.5% inclusion (4.5LIQ), 3) liquid at 9% inclusion (9LIQ), or 4) liquid at 13.5% inclusion (13.5LIQ). The remainder of the diet was 47.5% to 55.5% dry rolled corn, 20% corn silage, and 20% modified wet distillers grains with solubles (DM basis). Data were analyzed as a randomized complete block design and linear and quadratic were examined to determine effects of increasing dietary concentrations of liquid. Steers fed 4.5LIQ and 9LIQ had greater (quadratic; P ≤ 0.05) final BW, HCW, and NE(m) and NE(g), and less DMI as a percent of BW compared to steers fed 13.5LIQ. Steers fed 0LIQ were intermediate and not different from other treatments. However, ADG and total BW gain did not differ (P ≥ 0.15) among treatments. Despite the lack of treatment effect on live measures of gain, feeding steers 4.5LIQ and 9LIQ resulted in greater carcass ADG (quadratic; P = 0.03), total carcass gain (quadratic; P = 0.04), and more efficient carcass gain (quadratic; P ≤ 0.01) compared to carcasses from steers fed 13.5LIQ. Feeding steers a liquid supplement at 9% of the diet, DM allowed for the greatest final BW and ADG in this study; however, there was no benefit of increasing liquid to 13.5%.