Cargando…

Expanding our understanding of the role polyprotein conformation plays in the coronavirus life cycle

Coronavirus are the causative agents in many globally concerning respiratory disease outbreaks such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and coronavirus disease-2019 (COVID-19). It is therefore important that we improve our understanding of how the mol...

Descripción completa

Detalles Bibliográficos
Autor principal: Gildenhuys, Samantha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7200640/
https://www.ncbi.nlm.nih.gov/pubmed/32348474
http://dx.doi.org/10.1042/BCJ20200223
Descripción
Sumario:Coronavirus are the causative agents in many globally concerning respiratory disease outbreaks such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and coronavirus disease-2019 (COVID-19). It is therefore important that we improve our understanding of how the molecular components of the virus facilitate the viral life cycle. These details will allow for the design of effective interventions. Krichel and coauthors in their article in the Biochemical Journal provide molecular details of how the viral polyprotein (nsp7–10) produced from the positive single stranded RNA genome, is cleaved to form proteins that are part of the replication/transcription complex. The authors highlight the impact the polyprotein conformation has on the cleavage efficiency of the main protease (M(pro)) and hence the order of release of non-structural proteins 7–10 (nsp7–10) of the SARS-CoV. Cleavage order is important in controlling viral processes and seems to have relevance in terms of the protein–protein complexes formed. The authors made use of mass spectrometry to advance our understanding of the mechanism by which coronaviruses control nsp 7, 8, 9 and 10 production in the virus life cycle.