Cargando…
Computational Assessment of Thermokinetics and Associated Microstructural Evolution in Laser Powder Bed Fusion Manufacturing of Ti6Al4V Alloy
Although most of the near non-equilibrium microstructures of alloys produced by laser powder bed fusion (LPBF) additive manufacturing (AM) are being reported at a rapid rate, the accountable thermokinetics of the entire process have rarely been studied. In order to exploit the versatility of this AM...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7200685/ https://www.ncbi.nlm.nih.gov/pubmed/32371890 http://dx.doi.org/10.1038/s41598-020-63281-4 |
Sumario: | Although most of the near non-equilibrium microstructures of alloys produced by laser powder bed fusion (LPBF) additive manufacturing (AM) are being reported at a rapid rate, the accountable thermokinetics of the entire process have rarely been studied. In order to exploit the versatility of this AM process for the desired properties of built material, it is crucial to understand the thermokinetics associated with the process. In light of this, a three-dimensional thermokinetic model based on the finite element method was developed to correlate with the microstructure evolved in additively manufactured Ti6Al4V alloy. The computational model yielded the thermal patterns experienced at given location while building a single layer through multiple laser scans and a whole part through multiple layers above it. X-ray analysis of the resultant microstructure confirmed the presence of acicular martensitic (α′) phase of (002) texture within the build-plane. Computationally predicted magnitude of the thermal gradients within the additively manufactured Ti6Al4V alloy in different directions (X, Y, and Z) facilitated the understanding about the evolution of grain morphology and orientation of acicular martensite in prior β grains. The scanning electron microscopy observations of the alloy revealed the distinct morphology of phase precipitated within the martensitic phase, whose existence was, in turn, understood through predicted thermal history. |
---|