Cargando…

Hybrid image sensor of small molecule organic photodiode on CMOS – Integration and characterization

Organic photodiodes (OPDs) for its interesting optoelectronic properties has the potential to be utilized with complementary metal-oxide-semiconductor (CMOS) circuit for imaging, automotive, and security based applications. To achieve such a hybrid device as an image sensor, it is imperative that th...

Descripción completa

Detalles Bibliográficos
Autores principales: Shekhar, Himanshu, Fenigstein, Amos, Leitner, Tomer, Lavi, Becky, Veinger, Dmitry, Tessler, Nir
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7200686/
https://www.ncbi.nlm.nih.gov/pubmed/32372047
http://dx.doi.org/10.1038/s41598-020-64565-5
Descripción
Sumario:Organic photodiodes (OPDs) for its interesting optoelectronic properties has the potential to be utilized with complementary metal-oxide-semiconductor (CMOS) circuit for imaging, automotive, and security based applications. To achieve such a hybrid device as an image sensor, it is imperative that the quality of the OPD remains high on the CMOS substrate and that it has a well-connected optoelectronic interface with the underneath readout integrated circuit (ROIC) for efficient photogeneration and signal readout. Here, we demonstrate seamless integration of a thermally deposited visible light sensitive small molecule OPD on a standard commercial CMOS substrate using optimized doped PCBM buffer layer. Under a standard power supply voltage of 3 V, this hybrid device shows an excellent photolinearity in the entire bias regime, a high pixel sensitivity of 2 V/Lux.sec, a dynamic range (DR) of 71 dB, and a low dark leakage current density of 1 nA/cm(2). Moreover, the integrated OPD has a minimum bandwidth of 400 kHz. The photoresponse nonuniformity being only 1.7%, achieved under research lab conditions, strengthens the notion that this fully-CMOS compatible technology has the potential to be applied in high-performance large-scale imaging array.