Cargando…
Phase imaging with an untrained neural network
Most of the neural networks proposed so far for computational imaging (CI) in optics employ a supervised training strategy, and thus need a large training set to optimize their weights and biases. Setting aside the requirements of environmental and system stability during many hours of data acquisit...
Autores principales: | Wang, Fei, Bian, Yaoming, Wang, Haichao, Lyu, Meng, Pedrini, Giancarlo, Osten, Wolfgang, Barbastathis, George, Situ, Guohai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7200792/ https://www.ncbi.nlm.nih.gov/pubmed/32411362 http://dx.doi.org/10.1038/s41377-020-0302-3 |
Ejemplares similares
-
Extending the depth-of-field of imaging systems with a scattering diffuser
por: Liao, Meihua, et al.
Publicado: (2019) -
Deep-learning-based ghost imaging
por: Lyu, Meng, et al.
Publicado: (2017) -
Author Correction: Deep-learning-based ghost imaging
por: Lyu, Meng, et al.
Publicado: (2018) -
Recognition ability of untrained neural networks to symbolic numbers
por: Zhou, Yiwei, et al.
Publicado: (2022) -
Face detection in untrained deep neural networks
por: Baek, Seungdae, et al.
Publicado: (2021)