Cargando…
Data supporting the effects of xanthine derivative KMUP-3 on vascular smooth muscle cell calcification and abdominal aortic aneurysm in mice
No pharmacotherapy in the clinical setting has been available to alter the natural history of abdominal aortic aneurysm (AAA). Targeting vascular smooth muscle cell (VSMC) dysfunction during the pathogenesis of AAA, including phenotypic switch and apoptosis, could be a potential strategy to limit AA...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7200827/ https://www.ncbi.nlm.nih.gov/pubmed/32382597 http://dx.doi.org/10.1016/j.dib.2020.105550 |
Sumario: | No pharmacotherapy in the clinical setting has been available to alter the natural history of abdominal aortic aneurysm (AAA). Targeting vascular smooth muscle cell (VSMC) dysfunction during the pathogenesis of AAA, including phenotypic switch and apoptosis, could be a potential strategy to limit AAA growth. Here, we provide additional information regarding materials, methods and data related to our recent study published in Atherosclerosis [1]. The therapeutic potential of a self-developed xanthine derivative KMUP-3 was evaluated in VSMC calcification and abdominal aortic aneurysm (AAA). In vitro VSMC calcification was induced using β-glycerophosphate, and AAA was induced using angiotensin II infusion for 4 weeks in apolipoprotein E-deficient mice. The data contained in this article support the effects of KMUP-3 on VSMC calcification and AAA. |
---|