Cargando…
An Unsupervised Strategy for Identifying Epithelial-Mesenchymal Transition State Metrics in Breast Cancer and Melanoma
Digital cytometry aims to identify different cell types in the tumor microenvironment, with the current focus on immune cells. Yet, identifying how changes in tumor cell phenotype, such as the epithelial-mesenchymal transition, influence the immune contexture is emerging as an important question. To...
Autores principales: | Klinke, David J., Torang, Arezo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7200934/ https://www.ncbi.nlm.nih.gov/pubmed/32371374 http://dx.doi.org/10.1016/j.isci.2020.101080 |
Ejemplares similares
-
An elastic-net logistic regression approach to generate classifiers and gene signatures for types of immune cells and T helper cell subsets
por: Torang, Arezo, et al.
Publicado: (2019) -
AKT3 Expression in Mesenchymal Colorectal Cancer Cells Drives Growth and Is Associated with Epithelial-Mesenchymal Transition
por: Buikhuisen, Joyce Y., et al.
Publicado: (2021) -
Utility metric for unsupervised feature selection
por: Villa, Amalia, et al.
Publicado: (2021) -
Exploring and modelling colon cancer inter-tumour heterogeneity: opportunities and challenges
por: Buikhuisen, Joyce Y., et al.
Publicado: (2020) -
Epithelial to mesenchymal transition and breast cancer
por: Tomaskovic-Crook, Eva, et al.
Publicado: (2009)